
Local Search and the Traveling Salesman
Problem: A Feature-Based Characterization of

Problem Hardness

Olaf Mersmann1, Bernd Bischl1, Jakob Bossek1, Heike Trautmann1, Markus
Wagner2, and Frank Neumann2

1 Statistics Faculty, TU Dortmund University, Germany
{olafm,bischl,bossek,trautmann}@statistik.tu-dortmund.de

2 School of Computer Science, The University of Adelaide, Australia
{markus.wagner,frank.neumann}@adelaide.edu.au

Abstract. With this paper we contribute to the understanding of the
success of 2-opt based local search algorithms for solving the traveling
salesman problem (TSP). Although 2-opt is widely used in practice, it
is hard to understand its success from a theoretical perspective. We take
a statistical approach and examine the features of TSP instances that
make the problem either hard or easy to solve. As a measure of problem
difficulty for 2-opt we use the approximation ratio that it achieves on
a given instance. Our investigations point out important features that
make TSP instances hard or easy to be approximated by 2-opt.

Keywords: TSP, 2-opt, Classification, Feature Selection, MARS

1 Introduction

Metaheuristic algorithms such as local search, simulated annealing, evolutionary
algorithms, and ant colony optimization have produced good results for a wide
range of NP-hard combinatorial optimization problems. One of the most famous
NP-hard combinatorial optimization problems is the traveling salesman problem
(TSP). Given a set of N cities and positive distances dij to travel from city i to
city j, 1 ≤ i, j ≤ N and i 6= j, the task is to compute a tour of minimal traveled
distance that visits each city exactly once and returns to the origin.

The perhaps simplest NP-hard subclass of TSP is the Euclidean TSP where
the cities are points in the Euclidean plane and the distances are the Euclidean
distances between them. We will focus on the Euclidean TSP. It is well known
that there is a polynomial time approximation scheme (PTAS) for this prob-
lem [2]. However, this algorithm is very complicated and hard to implement.

Many heuristic approaches have been proposed for the TSP. Often local
search methods are the preferred methods used in practice. The most successful
algorithms rely on the well-known 2-opt operator, which removes two edges from
a current tour and connects the resulting two parts by two other edges such that
a different tour is obtained [9]. Despite the success of these algorithms for a wide
range of TSP instances, it is still hard to understand 2-opt from a theoretical
point of view.



2 O. Mersmann et al.

Theoretical studies regarding 2-opt have investigated the approximation be-
havior as well as the time to reach a local optimum. Chandra et al [4] have stud-
ied the worst-case approximation ratio that 2-opt achieves for different classes
of TSP instances. Furthermore, they investigated the time that a local search
algorithm based on 2-opt needs to reach a locally optimal solution. Englert et
al. [6] have shown that there are even instances for the Euclidean TSP where
a deterministic local search algorithm based on 2-opt would take exponential
time to find a local optimal solution. Furthermore, they have shown polynomial
bounds on the expected number of steps until 2-opt reaches a local optimum
for random Euclidean instances and proved that such a local optimum gives a
good approximation for the Euclidean TSP. These results also transfer to simple
ant colony optimization algorithms as shown in [12]. Most previously mentioned
investigations have in common that they either investigate the worst local opti-
mum and compare it to a global optimal solution or investigate the worst case
time that such an algorithm needs to reach a local optimal solution. Although
these studies provide interesting insights into the structure of TSP instances
they do not provide much insights into what is actually going on in the applica-
tion of 2-opt based algorithms. In almost all cases the results obtained by 2-opt
are much better than the actual worst-case guarantees given in these papers.
These motivates the studies carried out in this paper, which aim to get further
insights into the search behavior of 2-opt and to characterize hard and easy TSP
instances for 2-opt.

We take a statistical meta-learning approach to gain new insights into which
properties of a TSP instance make it difficult or easy to solve for 2-opt. Analyz-
ing different features of TSP instances and their correlation we point out how
they influence the search behavior of local search algorithms based on 2-opt. To
generate hard or easy instances for the TSP we use an evolutionary algorithm
approach similar to the one of [21]. However, instead of defining hardness by
the number of 2-opt steps to reach a local optimum, we define hardness by the
approximation ratio that such an algorithm achieves for a given TSP instance
compared to the optimum solution. This is motivated by classical algorithmic
studies for the TSP problem in the field of approximation algorithms. Having
generated instances that lead to a bad or good approximation ratio, the features
of these instances are analyzed and classification rules are derived, which predict
the type of an instance (easy, hard) based on its feature levels. In addition, in-
stances of moderate difficulty in between the two extreme classes are generated
by transferring hard into easy instances based on convex combinations of both
instances, denoted as morphing. Systematic changes of the feature levels along
this “path” are identified and used for a feature based prediction of the difficulty
of a TSP instance for 2-opt-based local search algorithms.

The structure of the rest of this paper is as follows. In Section 2, we give an
overview about different TSP solvers, features to characterize TSP instances and
indicators that reflect the difficulty of an instance for a given solver. Section 3
introduces an evolutionary algorithm for evolving TSP instances that are hard
or easy to approximate and carries out a feature based analysis of the hardness



Analyzing 2-opt Performance 3

of TSP instances. Finally, we finish with concluding remarks and an outlook on
further research perspectives in Section 4.

2 Local Search and The Traveling Salesman Problem

Local search algorithms are frequently used to tackle the TSP problem. They
iteratively improve the current solution by searching for a better one in its pre-
defined neighborhood. The algorithm stops when there is no better solution in
the given neighborhood or if a certain number of iterations has been reached.

Historically, 2-opt [5] was one of the first successful algorithms to solve larger
TSP instances. It is a local search algorithm whose neighbourhood is defined by
the removal of two edges from the current tour. The resulting two parts of the
tour are reconnected by two other edges to obtain a new solution. Later on, this
idea has been extended to 3-opt [14] where three connections in a tour are first
deleted, and then the best possible reconnection of the network is taken as a
new solution. Lin and Kernighan [13] extended the idea to more complex neigh-
bourhoods by making the number of performed 2-opt and 3-opt steps adaptive.
Nowadays, variants of these seminal algorithms represent the state-of-the-art in
heuristic TSP optimizers.

Among others, memetic algorithms and subpath ejection chain procedures
have shown to be competitive alternatives, with hybrid approaches still being
investigated today. In the bio-inspired memetic algorithms for the TSP problem
(see [16] for an overview) information about subtours is combined to form new
tours via ’crossover operators’. Additionally, tours are modified via ’mutation
operators’, to introduce new subtours. The idea behind the subpath ejection
chain procedures is that in a first step a dislocation is created that requires
further change. In subsequent steps, the task is to restore the system. It has been
shown that the neighbourhoods investigated by the ejection chain procedures
form supersets of those generated by the Lin-Kernighan heuristic [8].

In contrast to the above-mentioned iterative and heuristic algorithms, Con-
corde [1] is an exact algorithm that has been successfully applied to TSP in-
stances with up to 85,900 vertices. It follows a branch-and-cut scheme [17], em-
bedding the cutting-plane algorithm within a branch-and-bound search. The
branching steps create a search tree, with the original problem as the root node.
By traversing the tree it is possible to establish that the leafs correspond to a
set of subproblems that include every tour for our TSP.

2.1 Characterization of TSP Instances

The theoretical assessment of problem difficulty of a TSP instance at hand a-
priori to optimization is usually hard if not impossible. Thus, research has fo-
cussed on deriving and extracting problem properties, which characterize and
relate to the hardness of TSP instances (e.g. [21, 10, 20]). We refer to these prop-
erties as features in the following and provide an overview subsequently. Features



4 O. Mersmann et al.

that are based on knowledge of the optimal tour [22, 11] cannot be used to char-
acterize an instance a priori to optimization. They are not relevant in the context
of this paper and thus are not discussed in detail.

An intuitive and considered feature is the number of nodes N of the TSP
instance [21, 10, 20]). Kanda et al. [10] assume the number of edges to be impor-
tant as well and introduce a set of features that are based on summary statistics
of the edge cost distribution. We will use edge cost or edge weight as a synonym
of distance between nodes in the following. The lowest, highest, mean and me-
dian edge cost are considered as well as the respective standard deviation and
the sum of N edges with lowest edge cost values. Furthermore, the quantity of
edges with costs lower than the mean or median edge cost is taken into account.
Additional features are the number of modes of the edge cost distribution and
related features such as the frequency of the modes and the mean of the modal
values.

Smith-Miles et al. [20, 21] list features that assume that the existence and
number of node clusters affect the performance of TSP solvers. Derived features
are the cluster ratio, i.e. the number of clusters divided by N , and the mean
distances to the cluster centers. Uniformity of an instance is further reflected
by the minimum, maximum, standard deviation and the coefficient of variation
of the normalized nearest-neighbor distances (nnd) of each node. The outlier
ratio, i.e. the number of outliers divided by N , and the number of nodes near
the edge of the plane are additionally considered. The centroid together with the
mean distance from the nodes to the centroid and the bounding box of the nodes
reflect the ’spread’ of the instance on the plane. The feature list is completed by
the fraction of distinct distances, i.e. different distance levels, and the standard
deviation of the distance matrix.

Note that in order to allow for a fair comparison of features across instances
of different sizes N the features have to be normalized appropriately. This means
that all distances and edge costs have to be divided by their total sum. Analo-
gously, all quantities have to be expressed relatively to the corresponding maxi-
mum quantity. Ideally, all instances should be normalized to the domain [0, 1]2

to get rid of scaling issues.
We will use the approximation ratio that an algorithm achieves for a given in-

stance as the optimization accuracy. The approximation ratio is given by the rel-
ative error of the tour length resulting from 2-opt compared to the optimal tour
length and is a classical measure in the field of approximation algorithms [23].
Based on the approximation ratio that the 2-opt algorithm achieves, we will
classify TSP instances either as easy or hard. Afterwards, we will analyze the
features of hard and easy instances.

3 Analysis of TSP Problem Difficulty

In this section, we analyze easy and hard instances for the TSP. We start by
describing an evolutionary algorithm that we used to generate easy and hard
instances. Later on, we characterize these instances by the different features



Analyzing 2-opt Performance 5

Algorithm 1 Generate a random TSP instance.

function randomInstance(size)
for i = 1→ size do

instance[i, 1]← U(0, 1) . Uniform random number between 0 and 1
instance[i, 2]← U(0, 1) . Uniform random number between 0 and 1

end for
return instance

end function

Algorithm 2 EA for evolving problem easy and hard TSP instances

function EA(popSize, instSize, generations, time limit, digits, repetitions, type)
poolSize← bpopSize/2c
for i = 1→ popSize do

population[i]← randomInstance(instSize)
end for
for generation = 1→ generations do

for k = 1→ popSize do
fitness[k]← computeFitness(population[k], repetitions)

end for
matingPool← createMatingPool(poolSize, population, fitness)
nextPopulation[1]← population[bestOf(fitness)] . 1-elitism
for k = 2→ popSize do

parent1← randomElement(population)
parent2← randomElement(population)
offspring ← uniformMutation(uniformCrossover(parent1, parent2))
nextPopulation[k]← round(normalMutation(offspring))

end for
population← nextPopulation
if over time limit time limit then

return population
end if

end for
end function

that we analyzed and point out which features make a TSP instance difficult to
be solved by 2-opt.

3.1 EA-Based Generation of Easy and Hard TSP Instances

As the aim is to identify the features that are crucial for predicting the hardness
of instances for the 2-opt heuristic, a representative set of instances is required
which consists of a wide range of difficulties. It turned out that the construction
of such a set is not an easy task. The generation of instances in a random manner
did not provide a sufficient spread with respect to the instance hardness. The
same is true for instances contained in the TSPLIB [18] of moderate size, i.e.
lower than 1000 nodes, for which, in addition, the number of instances is not high
enough to provide an adequate data basis. Higher instance sizes were excluded



6 O. Mersmann et al.

Algorithm 3 Compute Fitness

function ComputeFitness(instance, repetitions)
optimalTourLength← concorde(instance)
for j ← 1, repetitions do

twoOptTourLengths[j]← twoOpt(instance) . Two Opt Tour length
end for
return mean(twoOptTourLengths)

optimalTourLenght

end function

Algorithm 4 Mating pool creation

function createMatingPool(poolSize, population, fitness)
for i = 1→ poolSize do

matingPool[i]
← betterOf(randomElement(population),randomElement(population))

end for
return matingPool

end function

due to the large computational effort required for their analysis, especially the
computation of the optimal tours.

Therefore, two sets of instances are constructed in the [0, 1]-plane, which
focus on reflecting the extreme levels of difficulty. An evolutionary algorithm
(EA) is used for this purpose (see Algs. 1 - 4 for a description), which can be
parameterized such that its aim is to evolve instances that are either as easy or as
hard as possible for a given instance size. The approach is conceptually similar to
[21] but focusses on approximation quality rather than on the number of swaps.
Since some features depend on equal distances between the cities, we opted to
implement a rounding scheme in the mutation step to force all cities to lie on
a predefined grid. and consists of a different mutation strategy. Initial studies
also showed, that a second mutation strategy was necesarry. ”Local mutation”
was achieved by adding a small normal pertubation to the location, ”global
mutation” was performed by replacing each coordinate of the city with a new
uniform random value. This later step was performed with a very low probability.
All parameters are given at the end of this section.

The fitness function to be optimized is chosen as the approximation quality
of 2-opt, estimated by the arithmetic mean of the tour lengths of a fixed number
of 2-opt runs, on a given instance divided by the optimal tour length which is
calculated using Concorde [1]. In general other summary statistics instead of the
arithmetic mean could be used as well such as the maximum or minimum ap-
proximation quality achieved. Note that randomness is only induced by varying
the initial tour whereas the 2-opt algorithm is deterministic in always choos-
ing the edge replacement resulting in the highest reduction of the current tour
length. Depending on the type of instance that is desired, the betterOf and
bestOf operators are either chosen to minimze or maximize the approximation
quality.



Analyzing 2-opt Performance 7

We use a 1-elitism strategy such that only the individual with the current
best fitness value survives and will be contained in the next population. The
population is completed by iteratively choosing two parents from the mating
pool, applying uniform crossover, uniform and normal mutation and adding the
offspring to the population. This procedure is repeated until the population size
is reached. Two sequential mutation strategies enable small local as well as global
structural changes of the offspring resulting from the crossover operation.

In the experiments 100 instances each for the two instance classes (easy,
hard) with a fixed instance size of 100 are generated. The remaining parame-
ters are set as follows: popSize = 30, generations = 1500, time limit = 22h,
uniformMutationRate = 0.001, normalMutationRate = 0.01, digits = 2, and
the standard deviation of the normal distribution used in the normalMutation
step equals normalMutationSd = 0.025. The parameter levels were chosen
based on initial experiments. However, a matter of future research will be a
systematic tuning of the EA parameters in order to check if the results can
be significantly improved. The number of 2-opt repetitions for calculating the
approximation quality is set to 500.

3.2 Characterization of the Generated Instances

The average approximation qualities and respective standard deviations of the
evolved easy and hard instances are (1.032 ± 0.0041) and (1.177 ± 0.0044), i.e.
for the easy instances the average tour length of the 2-opt is about three percent
higher than the optimal tour. The corresponding value for the hard instances is
18 percent, which results in a sufficiently high performance discrepancy between
the two evolved sets.

In Figure 1 three EA generated instances of both classes are shown together
with the corresponding optimal tours computed by Concorde. The main visual
observations can be summarized as follows:

– The distances of the cities on the optimal tour appear to be more uniform for
the hard instances than it is the case for the easy ones. This is supported by
Figure 2 that shows boxplots of the standard deviations of the edge weights
on the optimal tour. There we see that respective standard deviations of the
easy instances are roughly twice as high than for the hard instances.

– The optimal tours of the hard instances are more similar to a “U-shape”
whereas the optimal tours of the easy instances rather match an “X-shape”.

– It seems that the easy instances consist of many small clusters of cities
whereas this is not the case for the hard instances up to the same extent.

3.3 Feature-Based Prediction of TSP Problem Hardness

A decision tree [3] is used to differentiate between the two instance classes. This
leads to the following classification rule, which is based on the coefficient of
variation of the nearest neighbor distances (CVND) and the highest edge cost
value (HEC):



8 O. Mersmann et al.

x

y

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

easy_inst_1
●

● ●

●●
●

●●

●●●
●

●●●●

●

●

●●
●
●
●●

●

●
●●
●

●
●

●

● ●
●●

●

●●
● ● ●

●●●●●●●●
●●

●
●●●

● ●

●

●
● ●
●●

●●
●●●●●

●
●● ●

●
●●●●

●
●●●

●●●●
●●

●●●

●●●●
●●

●●

hard_inst_1

●
●
●

● ●●
●●● ●

●

● ●
●

●

●●●
●
●●●

●●
●

●●●
●

●●●
●●●

●●●
●●

●●
●●

●
● ●● ●● ●

●
● ●

●●● ●
●

●

●
●●

●●
●●

●●●●
●●●●

●●
●●●

●●

●
●
●

●

●
● ●

● ●
●

●
●
●

●● ●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

easy_inst_2

●● ●

●
●

●● ●●
●●●●●

●●●●
● ●●

●●●

●●●●

●

●
●
●

●●●
●

●●●
●

●●●●●●

●
●

●●●
●●
●●●●●

●

●
●●

●

●
●● ●●●

●●●
●

●
●
●●

●●●
● ●

●●●●
●●●●●

●

●

●
●

●
●●●

●
●

hard_inst_2

●●
●
●

●
● ●●●●

●●
●●

●●●
●

●
● ●

●

●
●
●
●

●
●●

●

●●
●

●●
●

●
●●●●

●
● ● ● ●

●
●

●
●

●●●●
●

●●
●●●

●
●
●
●

●●
●
●●●●●

● ●
●●●
●

●

●
●●●●●

●

● ●●●
●●

●
●

● ●
●●

●
● ●

0.0 0.2 0.4 0.6 0.8 1.0

easy_inst_3

●● ●●
●

●●●
●

●
●

●●●

●

●
●
●●●

●

●
●

●●

●●●● ● ●
●

●●●

●

●●● ●●
●

●●
●●
● ●

●●
●

●
● ● ●●

●
●●●●●

●●

●●●●●

●
●

●

● ●●
●

●
●●

● ● ●

●●
●●●
●

●
●
●

●●●●
●●

●

●

●
●

hard_inst_3

●
●●

●
●

●
●
●

●
● ●

● ●●

●● ● ●
●

●
●●●

●●

●

●●
●

●
●●

●●●●●●●

●● ● ●●● ●
● ●

●

● ● ●
●●●

●●
●●●

●● ●
●

●

●

●

●
●●

●
●●

●
●●●

●●●●
●

●●
●●●

●●●● ●
●

●
●

●
●

●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

type

● easy

● hard

Fig. 1. Examples of the evolved instances of both types (easy, hard) including the
optimal tours computed by Concorde.

Type of instance

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 to

ur
 le

ng
th

 le
gs

 o
f t

he
 o

pt
im

al
 to

ur

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

●●

●
●

●

●●

●

hard easy

Fig. 2. Boxplots of the standard deviations of the tour length legs of the optimal tour,
both for the evolved easy and hard instances.

coefficient of variation of nnds>=0.5167739 → easy

coefficient of variation of nnds< 0.5167739

↪→ highest edge cost>=0.000485 → easy

↪→ highest edge cost< 0.000485 → hard

The ten-fold cross-validated error rate is very low, i.e. equals 3.02% so that
an almost perfect classification of instances into the two classes based on only



Analyzing 2-opt Performance 9

Fig. 3. Scatterplot of the features CVND and HEC for all evolved instances. Feature
classes predicted by the decision tree are marked by different colors. Incorrectly classi-
fied instances during cross-validation are labeled by a grey circle.

two features is possible. Basically, the classification relies on the single feature
CVND, which is shown in Figure 3. The two-dimensional feature space of the 200
instances is visualized using the features selected by the decision tree and labels
the instances based on the presented classification rule. Incorrectly classified
instances are marked by a grey circle.

It can be seen that the key feature for classifying the evolved instances into
the two classes is CVND, which is perfectly in line with the exploratory analysis
in Section 3.2. As the nearest neighbor of a node is the most likely candidate
to be chosen in the course of the construction of the optimal tour, the CVND
is highly correlated with the standard deviation of the distances on the optimal
tour. In addition, the interpretation of the subrule regarding the feature HEC
allows the same interpretation such that with increasing HEC value the less
likely a uniform distribution of the edge weights becomes.

Classification rules generated for classifying easy and hard instances w.r.t. the
Chained Lin-Kernighan (CLK) and Lin-Kernighan with Cluster Compensation
(LKCC) algorithms in [21] also incorporate the feature CVND but the rule points
into the opposite direction for CLK. Low CVND values characterize instances
that are easy to solve for CLK. Although in [21] the approximation quality
is measured by the number of swaps rather than by the resulting tour length
relative to the optimal one, this is an interesting observation. In contrast, the
results for LKCC are similar to the 2-opt rule, i.e. instances are classified as easy
for high CVND values in combination with a low number of distinct distances.



10 O. Mersmann et al.

3.4 Morphing Hard into Easy Instances

We are now in the position to separate easy and hard instances with the classifi-
cation rule presented in Section 3.3. In this section, instances in between, i.e. of
moderate difficulty, are considered as well. Starting from the result in [6] that a
hard TSP instance can be transformed into an easy one by slight variation of the
node locations, we studied the ’transition’ of hard to easy instances by morphing
a single hard instance IH into an easy instance IE by a convex combination of
the points of both instances, which generates an instance Inew in between the
original ones based on random point matching, i.e.

Inew = α · IH + (1− α) · IE with α ∈ [0, 1].

x

y

0.2

0.4

0.6

0.8

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

0.3 0.4 0.5 0.6 0.7 0.8 0.9

alpha

●● 0.0

●● 0.2

●● 0.4

●● 0.6

●● 0.8

●● 1.0

Fig. 4. Example: Morphing of one instance into a different instance for different α-levels
of the convex combination. Nodes of the same color belong to the same instance.

An example of morphing is shown in Figure 4. The morphing strategy is
applied to all possible combinations of single hard and easy instances of the
two evolved instance sets using 51 levels of α (α ∈ {0, 0.02, 0.04, ..., 1}). Each
generated instance is characterized by the levels of the features discussed in
Section 2.1. Thus, the changes of the feature levels with increasing α can be
studied which is of interest as it should lead to an understanding of the influence
of the different features on the approximation quality.



Analyzing 2-opt Performance 11

Figure 5 shows the approximation quality for the instances of all 10 000 mor-
phing sequences for the various α levels in the bottom subfigure. Starting from a
hard instance on the left side of the plot (α = 0) the findings of [6] are confirmed.
The approximation quality of 2-opt quickly increases, i.e. the value of approx
decreases, with slight increases of α. Interestingly, roughly for ≈ 0.1 < α < 0.9
the approximation quality is quite stable, whereas it nonlinearly increases for
α >= 0.9. Additionally, the feature levels of the generated instances are visual-
ized.

On the one hand features exist that do not show any systematic relation-
ship with the approximation quality, e.g. all features related to the modes, low-
est edge cost or cities near edge ratio one percent. Other features exhibit a con-
vex or concave shape obtaining similar values for the extreme α-levels and mini-
mum resp. maximum value at α ≈ 0.5, e.g. mean distance to cluster centroids 0.1,
cities near edge ratio five percent or edges lower than average cost. The ratio of
distinct distances is only low for α ∈ {0, 1} and rather constant on a much higher
level in between. A systematic nonlinear relationship can be detected for the fea-
tures on which the classification rule is based, i.e. the CVND and HEC as well
as for the mean of normalized nnds and sum of lowest edge values.

In order to get a more accurate picture of the relationship between the ap-
proximation quality and the features a Multivariate Adaptive Regression Splines
(MARS) [7] model is constructed in order to directly predict the expected ap-
proximation quality of 2-opt on a given instance based on the candidate features.
Only a subset of the data is considered for the analysis (all morphed instances
with α ∈ {0, 0.2, ..., 1}), in order to adequately balance the data w.r.t. the various
levels of 2-opt approximation quality. Had all 51 α-levels been used, the moder-
ately difficult instances would have been massively overrepresented compared to
the easy and hard instances.

We used a MARS model with interaction effects up to the second degree.
Although this model class consists of an internal variable selection strategy a
forward selection process together with a threefold cross-validation is applied in
order to systematically focus on model validation and minimizing the root mean
squared error (RMSE) of the prediction. Starting from an empty model, succes-
sively the feature that maximally reduces the RMSE is added to the existing
model until the RMSE improvement falls below the threshold t = 0.0005. The
results of the modeling procedure are shown in Table 1. The final root mean
squared error is 0.0113.

Feature list RMSE

empty model 0.0484
+ coefficient of variation of nnds (CVND) 0.0246
+ distinct distances (DD) 0.0163
+ highest edge cost (HEC) 0.0119
+ sum of lowest edge values (SLEV) 0.0113

Table 1. Results of the MARS model.



12 O. Mersmann et al.

Fig. 5. Approximation quality and feature values for different α levels of all conducted
morphing experiments. The annotations ” 0.01”,” 0.05” and ” 0.1” identify different
levels of the reachability distance as a parameter of GDBSCAN [19] used for clustering.

The main and interaction effects of the model are visualized in Figure 6.
Analogously to the classification rule the CVND is a key feature in predicting
the approximation quality. From the plots, it is obvious that high values of the
approximation ratio only occur for very low CVND values. However, the main
effect in this case does not reflect the classification rule generated before. The



Analyzing 2-opt Performance 13

HEC is only part of an interaction with the remaining features. The problem
hardness tends to be higher for low HEC values combined with high DD values
and low CVND values. In addition, problem hardness decreases with lower SLEV
values. The selection of the DD feature seems to be somewhat arbitrary in that
the slope of the effect line could just as well have been negative from visual anal-
ysis. Summarizing, the interpretation of the model results is not straightforward
but nevertheless a quite accurate prediction of 2-opt approximation quality on
the considered instances is achieved.

Fig. 6. Effect plots resulting from the MARS model. Main effects are plotted (top) to-
gether with the feature interactions (bottom). Coefficient of variation of nnds (CVND),
highest edge cost (HEC), distinct distances (DD) and sum of lowest edge values (SLEV)
were selected. In all plots the last axis reflects the approximation quality of 2-opt. The
plots are generated by setting the non-displayed variables to their median values.

4 Summary and Outlook

In this paper we investigated concepts to predict TSP problem hardness for
2-opt based local search strategies on the basis of experimental features that
characterize the properties of a TSP instance. A crucial aspect was the genera-
tion of a representative instance set as a basis for the analysis. This turned out
to be far from straightforward. Therefore it was only possible to generate very
hard and very easy instances using sophisticated (evolutionary) strategies. Sum-
marizing, we managed to generate classes of easy and hard instances for which



14 O. Mersmann et al.

we are able to predict the correct instance class based on the corresponding
feature levels with only marginal errors. The coefficient of variation of nearest
neighbor distances was identified as the key feature for differentiating between
hard and easy instances, and the results are supported by exploratory analysis
of the evolved instances and the respective optimal tours. However, it should
be noted that most probably not the whole space of possible hard instances is
covered by using our evolutionary method, i.e. probably only a subset of possible
characteristics or feature combinations that make a problem hard for 2-opt can
be identified by the applied methodology.

Instances of moderate difficulty were constructed by morphing hard into
easy instances where the effects of the transition on the corresponding feature
levels could be studied. A MARS model was successfully applied to predict the
approximation quality of 2-opt based on the features of an adequate subset of
the generated instances with very high accuracy.

The analysis offers promising perspectives for further research. A general-
ization of the results to other instance sizes should be addressed as well as a
systematic comparison to other local and global search as well as hybrid solvers
with respect to the influence of the feature levels of an instance on the perfor-
mance of the respective algorithms. However, it has to be kept in mind that
the computational effort intensely increases with increasing instance size as the
optimum solution, e.g. computable via Concorde, is required to calculate the
approximation quality of 2-opt.

The extension of the feature set is another relevant topic that could be
studied. For example, in the context of benchmarking algorithms on continu-
ous black-box optimization problems the extraction of problem properties that
might influence algorithm performance is an important and current focus of
research, denoted as exploratory landscape analysis (ELA, [15]). Although the
TSP search space is not continuous, e.g. the ELA feature that tries to capture
the number of modes of an empirical density function, could be transferred to
the problem at hand. Furthermore, possible advantages of sophisticated point
matching strategies during the morphing of hard into easy instances can be in-
vestigated. Finally, it is open how representative the generated instances are
for real-world TSP instances. It is therefore very desirable to create a much
larger pool of small to medium sized, real-world, TSP instances for comparison
experiments.

Acknowledgements: This work was partly supported by the Collaborative
Research Center SFB 823, the Graduate School of Energy Efficient Production
and Logistics and the Research Training Group “Statistical Modelling” of the
German Research Foundation.

References

1. Applegate, D., Cook, W.J., Dash, S., Rohe, A.: Solution of a min-max vehicle
routing problem. INFORMS Journal on Computing 14(2), 132–143 (2002)

2. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. J. ACM 45(5), 753–782 (1998)

3. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-
sion Trees. Wadsworth, Belmont, CA (1984)



Analyzing 2-opt Performance 15

4. Chandra, B., Karloff, H.J., Tovey, C.A.: New results on the old k-Opt algorithm
for the traveling salesman problem. SIAM J. Comput. 28(6), 1998–2029 (1999)

5. Croes, G.A.: A method for solving traveling-salesman problems. Operations Re-
search 6(6), pp. 791–812 (1958)

6. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the
2-opt algorithm for the tsp: extended abstract. In: Bansal, N., Pruhs, K., Stein, C.
(eds.) SODA. pp. 1295–1304. SIAM (2007)

7. Friedman, J.H.: Multivariate adaptive regression splines. Annals of Statistics 19(1),
1–67 (1991)

8. Glover, F.: Ejection chains, reference structures and alternating path methods
for traveling salesman problems. Discrete Applied Mathematics 65(1-3), 223–253
(1996)

9. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: A case study in
local optimization. In: Aarts, E.H.L., Lenstra, J.K. (eds.) Local Search in Combi-
natorial Optimization. Wiley (1997)

10. Kanda, J., Carvalho, A., Hruschka, E., Soares, C.: Selection of algorithms to solve
traveling salesman problems using meta-learning. Hybrid Intelligent Systems 8,
117–128 (2011)

11. Kilby, P., Slaney, J., Walsh, T.: The backbone of the travelling salesperson. In:
Proc, of the 19th international Joint Conference on Artificial intelligence. pp. 175–
180. IJCAI’05, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2005)

12. Kötzing, T., Neumann, F., Röglin, H., Witt, C.: Theoretical properties of two ACO
approaches for the traveling salesman problem. In: Proc. of ANTS 2010. LNCS, vol.
6234, pp. 324–335 (2010), extended journal version appears in Swarm Intelligence

13. Lin, S., Kernighan, B.: An effective heuristic algorithm for the traveling salesman
problem. Operations Research 21, 498–516 (1973)

14. Lin, S.: Computer solutions of the travelling salesman problem. Bell Systems Tech-
nical Journal 44(10), 2245–2269 (1965)

15. Mersmann, O., Bischl, B., Trautmann, H., Preuss, M., Weihs, C., Rudolph, G.:
Exploratory landscape analysis. In: Proc. of the 13th annual conference on Genetic
and evolutionary computation. pp. 829–836. GECCO ’11, ACM, New York, NY,
USA (2011)

16. Merz, P., Freisleben, B.: Memetic algorithms for the traveling salesman problem.
Complex Systems 13(4), 297–345 (2001)

17. Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of large-
scale symmetric traveling salesman problems. SIAMR 33(1), 60–100 (1991)

18. Reinelt, G.: Tsplib - a traveling salesman problem library. ORSA Journal on Com-
puting 3(4), 376–384 (1991)

19. Sander, J., Ester, M., Kriegel, H., Xu, X.: Density-based clustering in spatial
databases: The algorithm gdbscan and its applications. Data Mining and Knowl-
edge Discovery 2(2), 169–194 (1998)

20. Smith-Miles, K., van Hemert, J.: Discovering the suitability of optimisation algo-
rithms by learning from evolved instances. Annals of Mathematics and Artificial
Intelligence p. forthcoming (2011)

21. Smith-Miles, K., van Hemert, J.I., Lim, X.Y.: Understanding tsp difficulty by learn-
ing from evolved instances. In: Blum, C., Battiti, R. (eds.) LION. Lecture Notes
in Computer Science, vol. 6073, pp. 266–280. Springer (2010)

22. Stadler, P.F., Schnabl, W.: The Landscape of the Traveling Salesman Problem.
Physics Letters A 161, 337–344 (1992)

23. Vazirani, V.V.: Approximation algorithms. Springer (2001)


