
Evaluation of a Multi-Objective EA on Benchmark
Instances for Dynamic Routing of a Vehicle

Stephan Meisel
Dept. of Information Systems

University of Münster, Germany
stephan.meisel@uni-

muenster.de

Christian Grimme
Dept. of Information Systems

University of Münster, Germany
christian.grimme@uni-

muenster.de

Jakob Bossek
Dept. of Information Systems

University of Münster, Germany
bossek@uni-
muenster.de

Martin Wölck
Dept. of Information Systems

University of Münster, Germany
martin.woelck@uni-

muenster.de

Günter Rudolph
Dept. of Computer Science

TU Dortmund Univ., Germany
guenter.rudolph@tu-

dortmund.de

Heike Trautmann
Dept. of Information Systems

University of Münster, Germany
trautmann@uni-

muenster.de

ABSTRACT
We evaluate the performance of a multi-objective evolution-
ary algorithm on a class of dynamic routing problems with
a single vehicle. In particular we focus on relating algo-
rithmic performance to the most prominent characteristics
of problem instances. The routing problem considers two
types of customers: mandatory customers must be visited
whereas optional customers do not necessarily have to be
visited. Moreover, mandatory customers are known prior
to the start of the tour whereas optional customers request
for service at later points in time with the vehicle already
being on its way. The multi-objective optimization problem
then results as maximizing the number of visited customers
while simultaneously minimizing total travel time. As an a-
posteriori evaluation tool, the evolutionary algorithm aims
at approximating the related Pareto set for specifically de-
signed benchmarking instances di↵ering in terms of num-
ber of customers, geographical layout, fraction of mandatory
customers, and request times of optional customers. Con-
ceptional and experimental comparisons to online heuristic
procedures are provided.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization

Keywords
Transportation; Metaheuristics; Online algorithms; Multi-
objective optimization; Combinatorial optimization

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GECCO ’15, July 11 - 15, 2015, Madrid, Spain
c� 2015 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3472-3/15/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2739480.2754705

1. INTRODUCTION
Many real-world vehicle routing problems are of dynamic

nature [20]. As one of the most prominent examples of dy-
namic routing of a vehicle, we consider the case where cus-
tomer requests are not known in advance but are revealed in
the course of time while the vehicle already is on its way. In
practice both decisions about accepting dynamic customer
requests for service and decisions about routing the vehicle
are made in real-time. To this end decision makers typi-
cally rely on decision rules that they apply each time a new
request occurs (see, e.g., [16]). However, real-time vehicle
routing necessarily su↵ers from the fact that decisions are
made without information about all customer requests being
known. As a consequence, optimal decisions will rarely oc-
cur, and the problem of a-priori selection of the best decision
rule is hard.

Yet one way of gradually gaining insights into the perfor-
mance of decision rules consists of assessing applied rules in
retrospect. In this paper we provide two fundamental means
that enable such an assessment, provided that the decision
maker pursues the two competing objectives of maximiza-
tion of served requests and of minimization of travel dis-
tance.

On the one hand, we apply a multi-objective evolutionary
algorithm for approximating the Pareto-front of a-posteriori
solutions. The set of Pareto e�cient a-posteriori solutions
of a given problem instance may serve as a point of refer-
ence for solutions resulting from application of any real-time
decision rule. On the other hand, we take into account the
fact that algorithmic performance often strongly depends on
the specific problem instance at hand. Therefore we care-
fully design and generate a set of benchmarking problem
instances that systematically cover realizations of the most
relevant problem characteristics.

The two main contributions of the present work are the
new benchmarking instances that we propose as well as our
analysis of the behavior of the evolutionary algorithm with
respect to the di↵erent instances of the benchmarking set.

The following Section 2 provides a summary of related
work, before Section 3 mathematically defines the class of
routing problems we consider. Section 4 illustrates the ap-
proach we propose for generating a set of benchmarking in-

425

stances of the class of routing problems. Section 5 introduces
the multi-objective evolutionary algorithm. Finally, Section
6 provides computational results that illustrate the perfor-
mance of the evolutionary algorithm with respect to the set
of benchmarking instances. Section 7 concludes the paper.

2. RELATED WORK
Most of the existing works in the literature only consider

the single objective of maximizing the number of customers
visited within a given amount of time. The single vehi-
cle problem with optional customers is frequently addressed
as ”orienteering problem” (e.g. [10]). A survey on di↵erent
kinds of orienteering problems is provided in [21]. Although
it has been recognized that orienteering problems should be
formulated as bi-objective optimization problems [15], it can
be concluded [7] that subsequent work (e.g. [5]) avoided deal-
ing with true bi-objective formulations and aimed at mini-
mization of the sum of total distance traveled and penalties
for unvisited customers.

Publications that deal with a bi-objective formulation of
the orienteering problem are rare. In [2] the ✏-constraint ap-
proach is used to approximate the Pareto frontier by solving
a series of single-objective problems where one of the two ob-
jectives is transformed into a constraint with varying bound
✏. The solution of a series of single-objective problems is
also necessary for the approximation schemes proposed in
[8] which are proven to provide a Pareto-✏-approximation of
the e�cient set of solutions.

In contrast to the two preceding works the approach pro-
posed in [13] explicitly solves the bi-objective formulation of
the orienteering problem. Their method determines a high
quality approximation of the e�cient Pareto-frontier by two
main steps. First an NSGA-II based multi-objective evolu-
tionary algorithm is applied for generating a set of initial
solutions. These solutions serve as starting points for an
ejection chain process with two sets of neighborhood moves.
A computational comparison with an iterated ✏-constraint
implementation of a state-of-the-art meta-heuristic for the
single-objective orienteering problem shows that the method
has advantages as the problem size increases.

To our knowledge, the approach of [13] so far is the only
one that solves the bi-objective version of an orienteering
problem without transformations to (a series of) single-crite-
rion problems. Therefore it may be considered as most re-
lated to our approach, however time windows are not con-
sidered. Our problem scenario di↵ers from traditional ori-
enteering problems with time windows [14] as follows: the
lower bound of a customer’s time window does not represent
the earliest point in time at which the vehicle may arrive at
this customer’s location; instead, the lower bound of a cus-
tomer’s time window represents the earliest point in time at
which the vehicle may leave the preceding customer location.
As a consequence, a comparison to previous work is hardly
possible and new benchmark problems have to be developed.
Thus, the few existing benchmark problems for orienteering
problems with time windows [21] will not be included here
as those would have to be adapted for our purposes and
moreover lack a systematic generation procedure.

3. PROBLEM CLASS
Each problem instance of the benchmarking set proposed

in the following Section 4 belongs to the class of vehicle rout-

ing problems defined in this section. An instance comprises
one single vehicle and a set C = {1, 2, . . . , N} of locations,
where location i = 1 is the start depot and location i = N

is the end depot of the vehicle. Travel distances dij between
any pair (i, j) of locations are both known and determinis-
tic, and one unit of travel distance corresponds to one unit
of time. At time t = 0, the vehicle is located at i = 1 and
at the end of the tour the vehicle must reach i = N .

The set C\{1, N} of customers consists of both the subset
C

m of mandatory customers and the subset C

o of optional
customers, where C

m \ C

o = ;. Mandatory customers re-
quest for service before time t = 0 and must necessarily be
visited once by the vehicle. Each optional customer i issues
one service request at a particular point in time ti > 0 and
must immediately be either accepted for service or rejected.
Note that rejecting a customer typically saves travel time,
and that in practice such a customer will become a manda-
tory customer of the following day.

Maximization of customer satisfaction clearly suggests ac-
cepting all optional customers. On the other hand, however,
satisfying all requests typically implies high costs in terms of
a long overall travel distance. In order to make an appropri-
ate trade-o↵ between maximization of customer satisfaction
and minimization of travel costs both of these objectives are
considered simultaneously.

The resulting bicriteria problem to be solved for determi-
nation of ideal a-posteriori solutions may be described by
means of the following Equations 1a-1h:

min

⇣
(|C|�

X

i2C

x

c
i),(

X

(i,j)2E

dijx
r
ij)

⌘
(1a)

s.t. x

c
i = 1 8i 2 C \ {Co}, (1b)

X

(i,j)2�+(i)

x

r
ij = x

c
i 8i 2 C \ {N}, (1c)

X

(k,i)2��(i)

x

r
ki = x

c
i 8i 2 C \ {1}, (1d)

X

(k,i)2��(i)

(yki + dkix
r
ki)

X

(i,j)2�+(i)

yij 8i 2 C \ {1}, (1e)

X

(i,j)2�+(i)

(yij � tix
r
ij) �

X

(k,i)2��(i)

dkix
r
ki 8i 2 C, (1f)

yij 2 N0 8(i, j) 2 E, (1g)

x

r
ij , x

c
i 2 {0, 1} 8(i, j) 2 E, 8i 2 C (1h)

Three types of decisions are involved. For each location
i 2 C, decision x

c
i indicates whether or not the request of

customer i has been accepted or not. Decisions x

r
ij deter-

mine whether or not the road link connecting locations i and
j is part of the vehicles ideal route. Note that we assume
that all locations of C are connected with each other, and
that distances between any pair i, j of locations are sym-
metric. The set of all road links connecting any pair (i, j)
is referred to as E. Set �

+(i) (set �

�(i)) contains all road
links that are going out of (or into) location i. Each of the
variables yij equals zero if link (i, j) is not part of the so-
lution, i.e., yij = 0 if xr

ij = 0. In case of xr
ij = 1, variable

yij denotes the point in time at which the vehicle arrives at
location i.

Our goal is minimization of both the number of unserved
customers and the total distance traveled by the vehicle
(Equation 1a). Equation 1b ensures that both depots as
well as all mandatory customers i 2 C

m will be visited be-

426

fore returning to N . Equations 1c and 1d ensure that the
vehicle leaves i = 0, reaches i = N and visits each customer
with an accepted request exactly once.

Equation 1e makes sure that the vehicle never arrives at
location i before it’s predecessor k (according to the route)
has been visited and the distance dki has been traveled. As
a consequence we have yki yij with j representing the
successor of i. Additionally, Equation 1f ensures that the
vehicle is never allowed to leave the preceding location k for
moving on to i before i has actually issued a service request.
Note that the claim of Equation 1f reflects the conditions
present in a real-time setting.

Against the background of the vehicle routing literature,
the proposed model represents a bicriteria orienteering prob-
lem. In the following Section we provide an approach to gen-
erating a set of benchmarking problem instances of the class
of vehicle routing problems defined by Equations 1a-1h.

4. BENCHMARKING SET GENERATION
Our experimental study is based on a specifically designed

set of 600 problem instances. The generated instances dif-
fer in the number of customers n 2 {50, 100, 200, 400} (in-
cluding both start and end depot), the number of clusters
nc 2 {1, 2, 3, 5, 10} and the fraction of optional customers
f 2 {0.25, 0.5, 0.75}, representing a variety of typical sce-
narios for the VRP.

We started by generating a single geographical layout for
each combination of the number of customers and the num-
ber of clusters. Single cluster instances consist of randomly
placed customers in the euclidean plane, starting with a
bounding box of [0, 100]2 for n = 50 and doubling the bound-
ing box sides on doubling the number of customers. The gen-
eration of instances with two or more clusters follows a more
sophisticated procedure: 1) We generate a latin hypercube
design (LHS) of size nc in two dimensions to get reasonable
cluster centers. The space-filling property of LHS designs
ensures, that the cluster centers are highly distributed in
the available space and avoids overlapping of clusters. 2)
We then sample random points from a multivariate Gaus-
sian distribution using the corresponding cluster center co-
ordinates as the mean vector and the euclidean distance to
the nearest cluster center as the variance.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x 2

Greedy

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x 2

Optimal

Figure 1: Greedy point matching (left) and optimal
point matching (right). The three longest distances
between assigned points are highlighted with bold
arrows.

Moreover, we adopt the concept of morphing instances
first introduced by [17] and later improved in [18], using a
convex combination of point coordinates of two instances to

generate instances in between the original ones [18]. How-
ever, we further improved the underlying point matching al-
gorithm, which determines points of both instances, which
should be combined. Recognizing that point matching on
instances of the same size is equivalent to an assignment
problem in bipartite graphs, we substituted the greedy ap-
proach used in [18] with a procedure, which makes use of
a linear programming solver and finds the optimal point
matching regarding to euclidean distance. The superiority
of our point matching approach is depicted in Figure 1 by
way of example.

α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1

●

● ●

●

●

●
●

●
●

●

● ●
● ●

●

● ●

●●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

● ●● ●●●

●

●

●

● ●●

●
●

● ●
●

●

●

●

●
●

●
●

●

●

●

●●
●●

●

●● ●●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●●

●

●

●

●

●

●

x1

x 2

Figure 2: Example: Morphing of a clustered in-
stance with two clusters and a random instance of
equal size with two depots in each case for di↵erent
morphing coe�cients ↵.

An example of our morphing approach is visualized in Fig-
ure 2, morphing an instance with two clusters with a random
instance. We observe a smooth and natural transition of one
instance into another for increasing morphing coe�cient ↵

(↵ 2 {0, 0.25, 0.5, 0.75, 1}), with ↵ = 0 and ↵ = 1 represent-
ing the original instances.

We used the enhanced morphing algorithm – handling de-
pots and customers separately – to generate instances in be-
tween the random instance and the instance with five clus-
ters for each cluster size and corresponding instance size,
resulting in 15 further geographical layouts. An overwiew of
all generated geographies is given in Figure 3.

As a next step, we assigned request times to a fraction of f
(f 2 {0.25, 0.5, 0.75}) customers randomly for each of our 40
geographies (5 random plus 20 clustered plus 15 morphed),
increasing the number of optional customers stepwise. The
request times were sampled from an Exponential distribu-
tion with the rate parameter set accordingly. We started
with a maximal arrival limit of 400 time units for instances
with 50 customers and doubled the arrival limit for instances
next in size each time. This process was repeated five times
with di↵erent seeds for the random number generator to get
di↵erent realizations of the underlying Poisson process.

We wrapped up the implementation of instance generation
and enhanced morphing in the R package netgen [3].

5. MULTIOBJECTIVE APPROACH
In order to experimentally evaluate the considered rout-

ing problem instances regarding their complexity for multi-
objective problem solving approaches as well as for evaluat-
ing the principal capabilities of multi-objective evolutionary
algorithms to tackle this problem, we apply NSGA-II [4] as
widely accepted algorithmic framework for our study. Start-
ing with an initial population of size µ, the algorithm per-
forms an evolutionary loop consisting of generating µ o↵-
spring solutions by variation, ranking the union set of par-
ents and o↵spring regarding non-domination, and finally cre-
ating a new parental population by adding better ranked
solutions until it contains µ or more individuals. If the new

427

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
x1

x 2
#Nodes: 50

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●0

50

100

150

200

0 50 100 150 200
x1

x 2

#Nodes: 100

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

100

200

300

400

0 100 200 300 400
x1

x 2

#Nodes: 200

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

0

200

400

600

800

0 200 400 600 800
x1

x 2

#Nodes: 400

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●●

●

● ●●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
x1

x 2

#Nodes: 50 , #Clusters: 2

●

●

●●●

●

●

●

●
●

●
●

●

●

●

●
●
●●●

●

●

● ●●
●

●
●

●●

●

●

●

●

●

●

● ●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●●
●
●

●●

●

● ●

●
●
●

●

●

●
●

●

●●●

●
●

●

●

●
●

●

●
●

●
●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

0

50

100

150

200

0 50 100 150 200
x1

x 2

#Nodes: 100 , #Clusters: 2

●

●

● ●
●●

●

● ●
●●

●●

●

●●
●●

●

● ●
●

●

●

●
● ●

●

●●

● ●
●

●
●●

●

●

● ●
●

●●
●●

●

●●
●
●

●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

●

●●
●●

●

●

●

●

●
●
●●
●

●

●●

●

●

●

●
●

●
●

●

●
●
●

●
●

●●●
●●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●
●
●

●
●
●●

●●●
●

●

● ●
●

● ●

●
●

●●

●

●●
●

●

●
●

●

● ●●

●

● ●
●

●●●●
●
●

●

●●

● ●
● ●

●●
●●●

●

●

●
●

●
●
●

●●
● ●●

●

●
●

●

●
●
●
●

●
●
●

● ●

● ●

●

●●
●

●

●

●

●

●

0

100

200

300

400

0 100 200 300 400
x1

x 2

#Nodes: 200 , #Clusters: 2

●

●

● ●
●●●●●● ●●
●● ●●●●●●

● ●

●

●

●
●

●

●
●

●

●●
●●

●
●●●●

●
●●

●

●

●
●
●●
●
●● ●●●

●
●
●

●●

●
●

●
●
●
●

●

●●
●●
●

●

●
●

●

●
● ●●● ●●
●

●

●

●

●
●

●

●

●

●●
●

●●●
●
●● ●
●
●● ●●
●
●

●
●

●

●
●

●
●●

●
●●

● ●
●●

●
●●●
●
●

●
● ●●
●

●

●
●
●●

●●
●

●

●
●●●
●

●●●●●●●
●
●

●●●●
●

●

●

●●
●

●
●

●
●

●

●●
●
●

●
●
●

●

●●●●●

●

●●●
● ●●
●
●

●
●●●●●●

●

●
●●

●
●
●

●●
●

●
●

●

●
●●
●●●● ●●
●
●● ●

●
●●●●●

●
●●
●

●●
●

● ●
●●

●
●

●

●

●●●
●●

●

●● ●
●
●
●

●

●
●●●●●●
●

●
●

●●●●●
●

●

●●

●
●
●

●●●
●●

● ●
●
●

●

●● ●
●●●
●
●● ●●
●

●●

●
●

●
●● ●
●

●
●
●●

●

●●
●

●

●●
● ●
●

●
●
●

●
●

●
●
●
●

●●
●●●●
●●●

●

●●
●

●

●
● ●

●
●●
●●

●●
●●

●

●
●
●

●
●● ●●●●

● ●●
●●●●

●

●

●●

●
● ●●

●

●
●

●

●

●
●
●

●
●
●

●

●

●

●

0

200

400

600

800

0 200 400 600 800
x1

x 2

#Nodes: 400 , #Clusters: 2

●

●

●●

●

●
● ●●●●

●
●

●

●

●

●●

●
●●
●

●

●

●● ●●

●

●

●

●

●●

●

●

●●

●

●
●●●

●

●

●

●
●●

●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
x1

x 2

#Nodes: 50 , #Clusters: 3

●

●

●

●● ●●●
●
●

●

●●
●
●

●

● ●
●

●●
●
●

●
●●

●

●

●●●●●●

●
●
●
●

●
●

●●

● ●

●
●

●●

●

●
●●

●

●●

●
●

●

● ●
●

●

●
●
● ●

●
●

●

●
●

●

●
●

●
●●●●●

●

●

●

●
●

●
●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

0

50

100

150

200

0 50 100 150 200
x1

x 2
#Nodes: 100 , #Clusters: 3

●

●

● ●
● ●

● ●
●

●●

●
●

●●
●●

●

●●

●

●●●

● ●
● ●

●
●
●

●

●
●
●

●

●

●●●

●
●
●
●●

●●●
●

● ●●
●

●
●
●

●
●
●●
●●
●
●

●

●
●

●

●
●

●

●●
●●

●
●●

●

●

●
●

●●
● ●●

●
●
●

●
●
● ●●

●
●●

●●●●
●●

●

●

●●

●●

●●●

● ●● ●
●●●● ● ●
●●

●
●●●

●
●

●
●●

●

●
●

●
● ●

●
●●●●●●

●

●

●
●

●● ●●●
●●
●

●
●

●
●
● ●
●

●

● ●

●●
●

●

●
●

●

●●●

●

● ●
●
●●
●

●

●●●
●●

●
●

●

●

●
●●

●

●

●

●

●

0

100

200

300

400

0 100 200 300 400
x1

x 2

#Nodes: 200 , #Clusters: 3

●

●

●
●●
●
●●●

●

●
●●●●
●●

●

●

●

●●

●
●

●
●●●
●

●
●

●

●
●
●●●

● ●●
● ●

●●
● ●●
●
●●

●
●●
●●

● ●●
●●● ●

●

●●
●
●●
●●●●

●●

●●
●●●

●●
●●●
●
●
●
●

●

●

●
●

●●●

●
●
●●●
●

●

●
●●

●

●●●

●
●

●
●●
●

●

●
●●●
●
●
●●●●●

●
●●●

●

●●

●●●
●●
●
●

●●

●

●
●

●
●

●

●●
●

●
●
●

●●●●●●

●
●

●● ●
●

●
●

●
●
●
● ●●

●
●

●
●

●
● ●
●

●●●●●●●
●

●
●●●
●

●

●

●●
●

●

●

●

●
●●●●
●●●●

●
●
●
●

●
● ●

●●●●
●●
●●

●

●
●

●

●

●

●
●

●
●
●

●
●

●●
●

●●
●●
● ●●●

●●●

●

● ●●●●●
●●●●●●

● ●●
●

●
●●

●

●
●
●●●●●●

● ●

●

●●●
●

●
●●●●

●
●

●
●

● ●●
●

●
●

●

●

●
●●

●● ●
●
●●

●●

●
●
●
●●●

●●
●●
●●

●
● ●●
●●●
●
●
●

●●●●
●

●
●

●
● ●

●●

●
●●
●

●
●●●●
●

●
●●
●
●●

●●
●
●

●

●
●●

● ●●●●
●

●
●●

●

●

●●

●

●●●●
●
●●●●

●

●

●

●

0

200

400

600

800

0 200 400 600 800
x1

x 2

#Nodes: 400 , #Clusters: 3

●

●

●
●●
●●
●

●

●

●

●
●
●

●
●●

●
●
●
●

●

●

●

●
●

●

●● ●
●●

●

●●
●

● ●●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
x1

x 2

#Nodes: 50 , #Clusters: 5

●

●

●
● ●●

●
●

●● ●
●●●

●

●
●●

●
●●

●

●

●

●
●
●

●● ●
●●●●

● ●●●●

●

●

● ●

● ●

●
●●

●

●
●
●
●

●

●●
●●●

●●
●

●
●

●

●
●
●

●
●●

●
●●

●●
●●

●
●

●

●
●
●

● ●●

● ●
●
●

●

●

●
●

●

●●

●

●

●

●

●

●0

50

100

150

200

0 50 100 150 200
x1

x 2

#Nodes: 100 , #Clusters: 5

●

●

●

●
●

●
●●

●
●●●●● ●

●

●●
●●●●●

●
●● ●●
●
●●●
●●●●
●
●

●●
●

●
●● ●

●●
●
●●●
● ●

● ●
●●

● ●●

●
●

●
●

●

●
●●

●

●
● ●

●

●
●●
●

●
●

●

●
●

●
●
●●
●
●●

●
●
●
●

●
●●

●●●●●●
●

●●●
●●

●

●
●

●●
●
●

●
●●●

●

● ●
●

●●

●

●
●

●

●
● ●
●●●●
●●●●

●
●
● ●●

●

●

●●

●

● ●

●

●●●●
● ●
●
●

●
●
●●●
●

●●
●

●●●● ●
●

●
●●
●

●●
●

●
●

●●●●●
●
●●●●
●

●

●
●●

●

●

●

●
0

100

200

300

400

0 100 200 300 400
x1

x 2

#Nodes: 200 , #Clusters: 5

●

●

●●●
●●
●●●●●

●●
●●●

●
●●
●

●●●

●
● ●

●●
●●●●●●

●
●●
●

● ●
●●●
●●
●
●

●
●●

●●●●●
●

●●
●●●

●●●●●●●●● ●●
●●
●
●●
●●●

●
●

●●●●●●
●●●●
●●

●
●
●
●
●
●●
●●●●●● ●
●●

●
●●●
●●

●
●●

●●
●●●
●●●●●●●
●
●●
● ●●●●
●

●●●●●
●● ●
●

●
●
●
●●
●●●●
●●
●
●

●
●●

●●
●

●●

●
●

●

●●●●● ●●●●●● ●
●

● ●

●
●

●●●
●

●
●

●●
●
●●●●
●●●

●
●
●

●
●
●●

●
●●
●

●
●

●●
●

●
●
●
●●
●

●
●
●
●

●
●●
●
●●
●●
●

●●●
●
●●●●●
●●●●●●

●

●●●
●●
●●●
●●●
●

●●●
●●
● ●●●●●●
●●
●●

●●●●●●●●
●●
●●●●●●●

●
●●
●

●
●

● ●● ●●
●●●●
●
● ●

●●●
●

●
●

●
●
●
●●● ●●●●●●●●

● ●
●
●

●●●●●●
●●
●●●
●
●
●●
●●●●●
●●●
●●

●●●

●
●

●
●●
●●●
●●
●
●
●●●●
●●●●●●

●
●●
●●

●

●

●

●

0

200

400

600

800

0 200 400 600 800
x1

x 2

#Nodes: 400 , #Clusters: 5

●

●

●●
●●

●
●●
●

●
●

●

●

●

●

● ●

●●

●
●

●
●

●
●

●
●●

●●

●
●●

●

●

● ●

●●
●
●

● ●
●

●

●

●●●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
x1

x 2

#Nodes: 50 , #Clusters: 10

●

●

●

●

●
●

●
●● ●

●

●●●
●

●●

●
●

●

●
●

●●●●●
●●

●

●
● ●

●
●
●●
●

●

●
●
●

●
●
● ●
●
●

●

●

●

●

●●●

●●●●●●
●

●●

●
●
●
●
●
●

●●
●

●

●

●
●●
●
● ●
●

●
●●
●

●●

●
●●

●

●●

●

● ●●

●
●

●

●

●

●

0

50

100

150

200

0 50 100 150 200
x1

x 2

#Nodes: 100 , #Clusters: 10

●

●
●●●

●
●●●●

●

●●●
●

●
●
●

●
●

●
●
●

●
●
● ●

●
●
●
●●
●

●

●
●●●●●

●

●
●

●
● ●

●

●●
●●
●
●●

●
●●

●

●

●●●●●● ●
●●

●
●●

●
●●●● ●●

●

●
●
●

●●
●

●
●
●●
●
●

●

●●
●
●
●

● ●●●
●●

●

●●●
●
●

●
●
●
●
●
●●

●
●●●●

●●●
●●●
●●

●

●
●

●
●

●

●
●
● ●
●
●●
●
●●●
●●●
●● ●●●

●●
●●●●

●●●
●

●●● ●●

●

●
●

●

●●
●
●
●

●
●
●● ●

●●
●●
●
●●●●

●
●
●
●

●
●●●

●

●

●

●

0

100

200

300

400

0 100 200 300 400
x1

x 2
#Nodes: 200 , #Clusters: 10

●

●

●● ●
●●●●●●
●

●
● ●●

●

●
●

● ●●
●

● ●●●●
●●
●●●●●●
●
●● ●

●

●
●
●

●●
●●●●●
●
●●●
●●
●
●●●●●
●●●●●●

●●●●●●●●●●● ●
●
●
●

●●
●●

●
●●●●●●

●
●●
●
●●
●●● ●●

●●●●●
●
●●●
●●●●●●●●
●
●●
●

●●
●
●●
●●
●●●●●
●

●●●●
●●●●
●●
●
●
●
●●●●●●●●●
●●●●●

●
●
●
●●●●●●

● ●●●

●●
●●
●●●●●

●●●●●
●●●●●
●
●
●
●●
●

●●●●
●
●
●●●
●
●●●●
●●
●●
●●●●

●
●
●

●
●●
●

●●●
●

●●
●●

●

●

●
●
●●●●●
●●●
●

●●●
●●●

●
●●●●●●
●●
●
●●
●

●
●●●●●●

●●

●●●●●●●●●●●●●●
●●●●●●●●
●
●
●

●
● ●

●●●●●●
● ●●

●
●

●●●
●

●●
●●●●●●
●●●

●
●

●
●●

● ●
●
●
●
●

●

●
●●●●● ●●●●●●

●●●
●
●
●
●●

●●
●

●●●
●

●●●●
●● ●
●●
●●
●
●●●●●●●●●●●●

●

●

●

●0

200

400

600

800

0 200 400 600 800
x1

x 2

#Nodes: 400 , #Clusters: 10

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
x1

x 2

#Nodes: 50
(Morphing coefficient 0.25)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
x1

x 2

#Nodes: 50
(Morphing coefficient 0.5)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

0

25

50

75

100

0 25 50 75 100
x1

x 2

#Nodes: 50
(Morphing coefficient 0.75)

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●0

50

100

150

200

0 50 100 150 200
x1

x 2

#Nodes: 100
(Morphing coefficient 0.25)

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●0

50

100

150

200

0 50 100 150 200
x1

x 2

#Nodes: 100
(Morphing coefficient 0.5)

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●0

50

100

150

200

0 50 100 150 200
x1

x 2

#Nodes: 100
(Morphing coefficient 0.75)

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

0

100

200

300

400

0 100 200 300 400
x1

x 2

#Nodes: 200
(Morphing coefficient 0.25)

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

0

100

200

300

400

0 100 200 300 400
x1

x 2
#Nodes: 200

(Morphing coefficient 0.5)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

100

200

300

400

0 100 200 300 400
x1

x 2

#Nodes: 200
(Morphing coefficient 0.75)

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●● ●●

0

200

400

600

800

0 200 400 600 800
x1

x 2

#Nodes: 400
(Morphing coefficient 0.25)

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●

●

●

●

●● ●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

0

200

400

600

800

0 200 400 600 800
x1

x 2

#Nodes: 400
(Morphing coefficient 0.5)

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

0

200

400

600

800

0 200 400 600 800
x1

x 2

#Nodes: 400
(Morphing coefficient 0.75)

Figure 3: Overwiew of generated geographies.

population size is larger than µ, solutions with worst rank
and smallest crowding distance [4] are removed. In the fol-
lowing we briefly explain the instantiation of the algorithmic
framework in terms of solution encoding, variation opera-
tors, and integration of local search.

A solution to the vehicle routing problem as defined in Sec-
tion 3 has several components: a subset of customers from C

must be selected, while simultaneously an optimal tour for
visiting those customers has to be determined. Thus, the
encoding of a solution candidate consists of a permutation
string and a binary string both of length N�2. The permu-
tation string encodes the sequence of visits to all customers,
while the binary string B = (b2, . . . , bN�1) 2 {0, 1}N�2 in-
dicates for each customer i 2 C \{1, N} whether it is visited
(bi = 1) or not (bi = 0). This encoding disregards the start
(i = 1) and end (i = N) depots, which are always part of the
tour. We additionally introduce a probability encoding for
each position in the binary string as strategy parameters to
distinguish between the subsets C

m and C

o of C. Herein,
we assign a flip probability pi 2 [0, 1] for each element in
the binary string. If pi = 0, the value of bi never changes
throughout the variation process. This way we denote cus-
tomers from C

m as obligatory. A probability 0 < pi 1
indicates a certain variability of value bi, denoting dynamic
customers from C

o.
With this encoding scheme a tour can be constructed from

the permutation string by only considering the active cus-
tomers. Fig. 4 shows two exemplary solutions for a problem
with six customers (start and end depots are excluded from
the encoding) and di↵erent activation states. In the left sce-
nario only customers 3 and 4 are active resulting in a tour
that only visits those customers. In the right scenario cus-
tomers 3, 4, and 5 are active. The tours result from the
permutations, with sequences 4 ! 3 (left) and 5 ! 3 ! 4
(right).

Figure 4: Exemplary encoding of two (Pareto-
optimal) solutions for a routing problem instance
with six customers, two of those active in the left
and three active in the right case.

5.1 Variation operators
For the proposed encoding consisting of two chromosomes

we combined common variation operators to specialized mu-
tation and crossover building blocks.

Swap/Flip-Mutation: The permutation chromosome is
varied by repeated pairwise swapping of randomly selected
entries. This is controlled by parameter �p 2 N which de-
termines the maximum number of swaps performed. The
actual number of swaps is drawn uniformly random from
{0, . . . ,�p} ⇢ N. Simultaneously, the binary string under-
goes a flip mutation, where each position bi 2 {0, 1} in the
string is flipped with probability pi 2 [0, 1] taken from the
strategy parameters.

PMX/One-Point-Crossover: The crossover of two solu-
tions is performed with Partially Mapped Crossover (PMX)
for the permutation string and with One-Point-Crossover for
the binary string. In PMX o↵spring is generated by inter-
changing a sub-sequence of the parental solutions and repair-

428

ing violations to the permutation [19]. One-Point-Crossover
recombines o↵spring by splitting up the binary string at a
random position and alternately connecting the parts.

Note, during mutation no repair of infeasible solutions is
needed. While swap mutation only changes the order of vis-
its to customers, i.e. the tour, flip mutation influences tour
length by activating and deactivating customers. During
evaluation, if an active customer’s order is not yet available
due to a later request time, the vehicle remains waiting at
the previous customer and the waiting time is added to tour
length. Thus, ine�cient tours containing long waiting times
are punished during selection and removed on the long run.

5.2 Integration of Local Search
In addition to variation operators we integrate local search—
especially for optimizing tour length—into NSGA-II. Instead
of starting with a random initial solution set we applied 2-
OPT local search to the initial population. Additionally,
2-OPT is repeatedly activated after variation. 2-OPT lo-
cal search optimizes tour length by removing edge crossings
from a tour. It is based on the insight, that in euclidean
graphs planar tours are more cost-e�cient than non-planar.
In our implementation we apply the steepest descent variant
of 2-OPT, which performs the most e↵ective interchange of
edges per step.

6. EXPERIMENTS
In this section we briefly describe the evaluation settings

before showing and discussing experimental results.

6.1 Experimental Setup
We applied NSGA-II with the described variation opera-

tors and 2-OPT local search. However, the parameter set-
tings for population size, variation operators, and number of
function evaluations depends on the considered instance size
(i.e. number of customers contained). As problem instance
sizes systematically double (see Section 4), we applied the
same approach to a basic set of good parameters.1 In Ta-
ble 1 we show generally formulated parameter settings and
denote the instance sizes with K = 0 when comprising 50
customers up to K = 3 when comprising 400 customers.
Experiments were repeated 10 times with independent ran-

Table 1: General algorithm parameters’ scheme.

Parameter Setting
Population size µ = 100 · 2K
Swap number �p = 2 · 2K
Flip probability 1

N�2

Function evaluations ⌫ = 6, 500, 000 · 2K
Initial local search 0.1 · ⌫
Internal local search 0.01 · ⌫, only 65 times per run

dom initialization. The chosen amount of basic function
evaluations resembles approximately 120s running time of
the algorithm implementation2 on a Intel i7-3667U CPU
machine at 2.5GHz with 8GB RAM. This makes the run-
ning time comparable with the maximum time allowed for
the applied real-time decision rules executed in CPLEX.
1This setting yielded best behavior for several considered
test instances of comprising 50 customers.
2Implemented in the jMetal framework [6].

For comparison we consider two real-time decision rules,
both of which are similar to rules that have been discussed
in the literature (see, e.g., [16]). Each rule makes decisions
about acceptance of new customer requests as well as about
revision of the routing plan at each point in time a new cus-
tomer request occurs. An acceptance decision is made by
maximizing the number of newly accepted customers sub-
ject to a predefined overall time horizon. Decisions about
plan revisions are then made by solving an open travelling
salesman problem with all customers that have already been
accepted but not visited yet. Note that this approach essen-
tially pursues the single objective of maximizing the number
of served customers at each point in time, with the second
objective being represented in terms of a constraint that
limits the total amount of travel time available.

The fact that the overall time horizon is predefined allows
for the decision rules to strategically include waiting times
into the route, where the idea is that allocating a certain
amount of waiting time at specific customer locations will
eventually reduce the overall distance travelled. Decisions
about waiting time allocation are made if the vehicle has
just arrived at a customer location, or if the vehicle currently
waits and a new request appears. In particular, we consider
the following two decision rules:

Distributed Waiting (DW): Waiting decisions are made
such that the total amount of currently available waiting
time is distributed equally among all customer locations of
the current planned route. The amount of time to be spent
at customer locations is recalculated as soon as a new cus-
tomer request is accepted.

Drive First (DF): The vehicle only waits at its current
customer location if both waiting time is available and the
planned route only contains the end depot.

We apply each rule to each of the problem instances featur-
ing either 50 or 100 locations. In order to approximate the
set of Pareto e�cient solutions with a given pair of instance
and decision rule, we vary the predefined total amount of
travel time and solve the instance several times. For each
instance we start with a time horizon that merely allows
for serving all customers C

m, i.e., that leads to rejection
of all optional customers. We then increase the time hori-
zon with a step size of ten time units until the time horizon
is su�ciently long for also serving all customers C

o. Both
the orienteering problem and the travelling salesman prob-
lem occuring at each decision time are solved optimally by
a branch-and-cut procedure.

6.2 Indicators
For evaluation of experimental results we applied some

standard as well as some specifically designed indicators,
which are briefly described in the following paragraphs.

Hypervolume.
For determining the algorithms’ performance on the eval-

uated instances, we applied the hypervolume indicator [22]
which measures the normalized hypervolume enclosed by a
non-dominated solution front and a given reference point.
The reference point is determined as nadir point for each
problem instance considering all NSGA-II and CPLEX re-
sults. Additionally, the utopia point is determined from the
same set of solutions fronts. Both utopia and nadir points
are used for normalizing the hypervolume.

429

Empirical Attainment Function.
The Empirical Attainment Function [9] allows the statis-

tical interpretation of stochastic multi-objective algorithms
by mapping the results of repeated algorithm runs to so
called k%-attainment surfaces. Each k%-surface partitions
the objective space in two areas: the area which is domi-
nated by k% solution sets over all runs and the area, which
is not dominated. Consequently, the best solutions obtained
over all runs form the 0%-surface, while the worst solutions
from all runs form the 100%-surface. In our evaluation we
always also provide the 50%-surface as median.

Coverage.
For the defined vehicle routing problem the number of el-

ements in the Pareto-front (PF) is determined by the num-
ber of optional customers: |PF | = |Co| + 1. Given a non-
dominated solution set X as result of applying algorithm A,
this value can be used to define the coverage of the solution
front as ratio

covA =
|X |

|Co|+ 1
.

Obviously, this indicator does not provide information on
the convergence behavior of algorithm A but indicates to
what extent tour solutions for all (optional) customer con-
figurations are found.

Determinism.
In order to make some statement on the algorithmic chal-

lenge posed by a problem instance topology, we define a
measure which considers problem characteristics as well as
solution quality: with TA denoting the longest tour (travel
time) in the non-dominated solution set after application of
algorithm A,

DetA = 1� max{ti| i 2 C

o}
TA

is called the determinism of the instance under A. This
measure relates the latest service request over all optional
customers (instance property) to the longest tour in the non-
dominated solution set. Clearly, the longest tour (largest
travel time) will always exceed the latest service request.
Thus determinism ranges in 0 < DetA 1. In this range,
determinism can be seen as a kind of approximation factor
for the solution element with only mandatory customers.
The lower DetA is, the closer to the determined tour’s end
the last service request is dispatched.

A very specific variant of this indicator can be defined as
purely instance related: instead of considering the longest
tour of an algorithm solution set, we compute the opti-
mal tour length TOPT for all (mandatory and optional) cus-
tomers in C without respecting service requests. We term
this indicator

DetOPT = 1� max{ti| i 2 C

o}
TOPT

.

This indicator specifically shows for 0 < DetOPT 1 that
the optimal travel time TOPT exceeds the last service re-
quest. For DetOPT 0 the last service request appears
after the lower bound for travel time.

In order to compute TOPT as shortest paths from start
to end depots, the Concorde solver [1] for the (symmetric)
Travelling Salesperson Problem (STSP) was used. As men-
tioned, we assumed, that there are no dynamic requests and

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●0

50

100

150

200

0 50 100 150 200
x1

x 2

#Nodes: 100

●

●

●

● ●●
●
●

●
● ●

●
●●

●

●

●
●
●

●●

●

●

●

●
●

●

●
● ●

●●●●

●
●
●

●●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●

●●
●●●

●●

●

●
●

●

●

●

●

●

●●

●
●●

●●
●
●

●
●

●

●

●
●

● ●●

● ●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
0

50

100

150

200

0 50 100 150 200
x1

x 2

#Nodes: 100 , #Clusters: 5

Figure 5: Examples for optimal hamiltonian pathes
from start to end depot on di↵erent geographies of
our benchmarking set.

thus all the customers are mandatory. Since the problem of
finding an optimal hamiltonian path di↵ers slightly from the
TSP, we applied two transformations to the distance matrix.
First, we replaced the two depots with a dummy depot. The
outgoing edges of this dummy node contain the distances of
the start depot and the edge weights of the ingoing edges
correspond to the edge weights of the end depot. However,
the distance matrix is not symmetric anymore and hence
the generated TSP problem is asymmetric (ATSP). Since
Concorde is specially designed for the symmetric TSP we
used a reformulation af the ATSP as a STSP by doubling
the number of customers [12], i.e., adding another dummy
customer for each customer. The resulting STSP was solved
to optimality with Concorde. The tours for the ATSP were
obtained by removing the dummy customers from the op-
timal STSP tour and and finally the optimal hamiltonian
path was extracted by ”cutting” the tour at the dummy de-
pot [11]. Figure 5 shows some exemplary paths for some of
our benchmark instances.

6.3 Results
The indicators introduced in Section 6.2 are used to an-

alyze problem characteristics in relation to EA behavior.
Indicator values can be compared over all instances as they
were designed in a normalized way such that the scaling
is independent from the individual instance characteristics.
At first, the relationship of both determinism indicators is
investigated in Figure 6. A clear structure is visible when
labeling the points regarding the underlying instance size.
Of course the DetEA indicator always exceeds DetOPT as

●
●●

●

●

●

●●●●
●

●

●

●
●

●

●

●
●

●
●●
●●
●
●●
●

●●

●

●

●●
●●

●

●●●
●
●
●●

●

●

●

●●●●
●●●●●

●
●
●●

●

●

●

●

●●●●●●●
●
●●●

●
●
●●

●

●●
●
●●●●●●●

●
●

●●●●●
●

●●
●
●●●
●

●
●●
●●●●
●●●●
●
●●●

●
●
●●●●●●●●●●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●
●
●
●

●●

●
●

●●

●

●●●●
●●
●

●
●
●
●●●

●

●●

●

●

●

●●
●

●

●●●●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●●
●

●
●●

●

●

●

●●

●

●

●
●

●

●

●
●
●●

●●

●
●

●

●
●●

●●

●●●●
●●●

●●
●●●●
●●
●

●●
●●●●

●
●
●

●

●

●●●
●

●

●●
●●

●

●●

●

●

●

●
●●

●●
●

●
●●
●

●●

●●

●●
●

●

●

●●
●

●

●

●

●●●

●
●●●●●●●●●
●●

●●●
●
●●
●
●●
●
●
●
●●●

●●

●
●
●

●

●
●
●
●
●●
●●

●

●

●●
●●
●
●
●●
●

●●●●
●

●

●

●●

●

●●●

●●

●●

●●●

●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●●
●●●
●

●

●

●

●●

●

● ●●

●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
DETEA

D
ET

O
PT

Instance size: ● ● ● ●50 100 200 400

●
● ●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●
● ●

●
●

●
● ●
●

●●

●

●

● ●
●●

●

●
●●

●
●
●●

●

●

●

● ● ●●

●●
● ●

●

●
●

●
●

●

●

●

●

● ●● ●●●
●
●
●●●

●
●

● ●

●

●
●

●
●●
●●

●
●●

●
●

●
●●●●

●

● ●
●
●● ●●

●

●
●● ●●

●
●● ● ●

●
● ●●

●
●
●●●● ●●●● ●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

● ●

●
●

●●

●

●●
●●

● ●
●

●
●

●
●●●

●

●●

●

●

●

● ●
●

●

●
●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●
●

●
●●

● ● ● ●
●●●

●
●

●●● ●
● ●

●

●
●●●●●

●

●

●

●

●

●● ●

●

●

● ●
●●

●

●
●

●

●

●

●
●●

●●
●

●

●
●
●

●●

●●

● ●
●

●

●

● ●
●

●

●

●

● ●●

●

● ●●● ●● ●● ●
●●

●●
●

●

●●
●

●●
●

●
●

● ●●

●●

●
●

●

●

●
●

●
●

●●
● ●

●

●

● ●
●●

●
●

●●
●

●●●●
●

●

●

●●

●

●●●

● ●

●●

● ●●

●●
●
●●●● ●●●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●
●

●

●●

●

● ●● ●●
●

●

●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●

−0.5

0.0

0.5

0.6 0.8 1.0
COVEA

D
ET

O
PT

Instance size: ● ● ● ●50 100 200 400

Figure 6: DetEA (left) resp. covEA(right) vs. DetOPT

for all considered instances. Color labels indicate
the instance size.

430

the maximum tour length of the evolutionary algorithm is
always longer than the optimal solution for all nodes dis-
regarding the request times. The extent of the di↵erence
increases with the instance size as larger problems are more
di�cult to solve for the EA. The same e↵ect is visible in case
DetOPT is related to covEA(see right part of 6). Clearly, for
higher instance sizes the fraction of approximated Pareto op-
timal solutions on the front decreases. Contrarily, DetOPT

is hardly influenced by the instance size which reflects that
our request time settings were chosen in a reasonable way.

●
●●

●

●

●

●●●●
●

●

●

●
●

●

●

●
●

●
●●
●●
●
●●
●

●●

●

●

●●
●●

●

●●●
●
●
●●

●

●

●

●●●●
●●●●●

●
●
●●

●

●

●

●

●●●●●●●
●
●●●

●
●
●●

●

●●
●
●●●●●●●

●
●

●●●●●
●

●●
●
●●●
●

●
●●
●●●●
●●●●
●
●●●

●
●
●●●●●●●●●●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●
●
●
●

●●

●
●

●●

●

●●●●
●●
●

●
●
●
●●●

●

●●

●

●

●

●●
●

●

●●●●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●●
●

●
●●

●

●

●

●●

●

●

●
●

●

●

●
●
●●

●●

●
●

●

●
●●

●●

●●●●
●●●

●●
●●●●
●●
●

●●
●●●●

●
●
●

●

●

●●●
●

●

●●
●●

●

●●

●

●

●

●
●●

●●
●

●
●●
●

●●

●●

●●
●

●

●

●●
●

●

●

●

●●●

●
●●●●●●●●●
●●

●●●
●
●●
●
●●
●
●
●
●●●

●●

●
●
●

●

●
●
●
●
●●
●●

●

●

●●
●●
●
●
●●
●

●●●●
●

●

●

●●

●

●●●

●●

●●

●●●

●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●●
●●●
●

●

●

●

●●

●

● ●●

●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
DETEA

D
ET

O
PT

Morphing coefficient: ● ● ●0.25 0.5 0.75

●
● ●

●

●

●

●●
●
●
●

●

●

●

●

●

●

●
●

●
● ●

●
●

●
● ●
●

●●

●

●

● ●
●●

●

●
●●

●
●
●●

●

●

●

● ● ●●

●●
● ●

●

●
●

●
●

●

●

●

●

● ●● ●●●
●
●
●●●

●
●

● ●

●

●
●

●
●●
●●

●
●●

●
●

●
●●●●

●

● ●
●
●● ●●

●

●
●● ●●

●
●● ● ●

●
● ●●

●
●
●●●● ●●●● ●●●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

● ●

●
●

●●

●

●●
●●

● ●
●

●
●

●
●●●

●

●●

●

●

●

● ●
●

●

●
●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●
●

●
●●

● ● ● ●
●●●

●
●

●●● ●
● ●

●

●
●●●●●

●

●

●

●

●

●● ●

●

●

● ●
●●

●

●
●

●

●

●

●
●●

●●
●

●

●
●
●

●●

●●

● ●
●

●

●

● ●
●

●

●

●

● ●●

●

● ●●● ●● ●● ●
●●

●●
●

●

●●
●

●●
●

●
●

● ●●

●●

●
●

●

●

●
●

●
●

●●
● ●

●

●

● ●
●●

●
●

●●
●

●●●●
●

●

●

●●

●

●●●

● ●

●●

● ●●

●●
●
●●●● ●●●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●
●

●

●●

●

● ●● ●●
●

●

●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●

−0.5

0.0

0.5

0.6 0.8 1.0
COVEA

D
ET

O
PT

Morphing coefficient: ● ● ●0.25 0.5 0.75

Figure 7: DetEA (left) resp. covEA(right) vs. DetOPT

for all considered instances. Color labels indicate
the morphing coe�cient.

The topology of the instances influences the problem and
EA characteristics. More specifically, DetOPT simultane-
ously increases with the morphing coe�cient (Figure 7, left).
Thus, the optimal open TSP solution is higher for more ran-
domly structured instances. The number of clusters has an
impact on DetOPT (Figure 8, left) such that random in-
stances lead to higher open TSP solutions. Smallest respec-
tive values result from the smallest number of clusters which
is intuitive as short paths are present within the clusters. In
Figure 7, DetOPT shows a smooth transition between clus-
tered and random instances. Contrarily, covEA is not in-
fluenced by the morphing coe�cient (Figure 7, right) while
DetEA has a slight tendency that the problem becomes less
deterministic with decreasing morphing coe�cient, i.e., for
stronger clustered instances.

●●

●

●

●

● ●
●

●

●
●

● ●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●
●

●

●
●

●
●●

● ● ● ●
●●●

●
●

●●● ●
● ●

●

●
●●●●●

●

●

●

●

●

●● ●

●

●

● ●
●●

●

●
●

●

●

●

●
●●

●●
●

●

●
●
●

●●

●●

● ●
●

●

●

● ●
●

●

●

●

● ●●

●

● ●●● ●● ●● ●
●●

●●
●

●

●●
●

●●
●

●
●

● ●●

●●

●
●

●

●

●
●

●
●

●●
● ●

●

●

● ●
●●

●
●

●●
●

●●●●
●

●

●

●●

●

●●●

● ●

●●

● ●●

●●
●
●●●● ●●●

●
●
●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●

●

●
●

●

●●

●

● ●● ●●
●

●

●

●

●●

●

●
● ●

●

●

●

●
●

●

●

●

−0.5

0.0

0.5

0.6 0.8 1.0
COVEA

D
ET

O
PT

Instance size: ● ● ● ● ●0 2 3 5 10

●
●●

●

●

●

●●●●
●

●

●

●
●

●

●

●
●

●
●●
●●
●
●●
●

●●

●

●

●●
●●

●

●●●
●
●
●●

●

●

●

●●●●
●●●●●

●
●
●●

●

●

●

●

●●●●●●●
●
●●●

●
●
●●

●

●●
●
●●●●●●●

●
●

●●●●●
●

●●
●
●●●
●

●
●●
●●●●
●●●●
●
●●●

●
●
●●●●●●●●●●●●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●

●
●
●
●
●

●●

●
●

●●

●

●●●●
●●
●

●
●
●
●●●

●

●●

●

●

●

●●
●

●

●●●●
●
●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●●
●

●
●●

●

●

●

●●

●

●

●
●

●

●

●
●
●●

●●

●
●

●

●
●●

●●

●●●●
●●●

●●
●●●●
●●
●

●●
●●●●

●
●
●

●

●

●●●
●

●

●●
●●

●

●●

●

●

●

●
●●

●●
●

●
●●
●

●●

●●

●●
●

●

●

●●
●

●

●

●

●●●

●
●●●●●●●●●
●●

●●●
●
●●
●
●●
●
●
●
●●●

●●

●
●
●

●

●
●
●
●
●●
●●

●

●

●●
●●
●
●
●●
●

●●●●
●

●

●

●●

●

●●●

●●

●●

●●●

●●●●●●●●●●●●●●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●
●

●

● ●

●

●●
●●●
●

●

●

●

●●

●

● ●●

●

●

●

●
●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
DETEA

D
ET

O
PT

Ratio of dynamic customers: ● ● ●25 50 75

Figure 8: covEA(left) resp. DetEA (right) vs. DetOPT .
Color labels indicate the number of clusters resp.
the fraction of dynamic customers. In the left figure
the morphed instances are neglected as the number
of clusters is not assigned here.

Of course, the fraction of dynamic customers is only of
interest for investigating the EA behaviour as the open TSP
solution does not take into account the request times. From

Figure 8 (right) we can conclude that within a specific in-
stance size (see Fig. 6 for relating the labels) a higher frac-
tion of dynamic customers increases the EA determinism.
Due to the increasing tour uncertainty coming along with a
higher fraction of dynamic customers, tour lengths tend to
be higher than for a larger number of mandatory customers.

0.4

0.6

0.8

0 50 100 150 200 250
Instance(s)

H
yp

er
vo

lu
m

e

Type: EA (no LS) EA DF DW

Figure 9: Dominated Hypervolume of the EA (with
and w/o local search) and DF / DW solutions for
instances of size 50 (left part) and 100 (right part).
For the evolutionary algorithm, the average of all
ten runs is shown.

In order to assess the EA performance on individual in-
stances the Dominated Hypervolume indicator (HV) is used.
Though the EA performance increases with higher HV val-
ues, the indicator level is only roughly comparable across
instances due to the nature of the underlying normalization
(see Section 6.2) but has to be evaluated in comparison to
other approaches. Here, we relate it to the single-objective
real-time (SORT) decision rules briefly discussed in Section
6.1. As the computational requirements of the latter ap-
proaches heavily increases with the instance size as well –
due to a desired fine discretization of the Pareto front – with
the number of optional customers, the former solutions are
only available for instance sizes 50 and 100. Figure 9 shows
the corresponding HV values. For the smallest instance size
of 50, the EA and the SORT rules are comparable, while the
EA often even provides better results than SORT. For the
subsequent instance size of 100, the SORT solutions outper-
form the EA which gives the impression that performance
di↵erence increases with instance size. However, the SORT
rules have to be conducted for each desired point on the
Pareto front separately which eventually leads to enormous
computation times and are thus not reasonably applicable
for bigger instance sizes. Contrarily, the EA approximates
the complete Pareto front in a single run and might perform
better with higher budget of function evaluations and tuned
parameter settings.

This potential can also be observed Figure 9 which shows
the benefit of applying local search in the EA compared to
applying a pure EA without local search mechanisms. Ad-
ditionally, Figure 10 exemplarily shows the di↵erence in ap-
proximation quality of EA and SORT solutions. In instances
of size 50, SORT solutions range in the attainment area of
the EA, while in 100 customer instances the optimization
of (long) tours with many customers often causes the major
di↵erence in HV performance. Specifically designed and ad-
justed operators and superior local search mechanisms could
help to overcome this issue. However, the focus is not on al-
gorithm tuning at this stage but rather understanding EA
behavior related to instance characteristics.

431

Figure 10: Exemplary attainment plots of EA re-
sults and DF / DW solutions for a 50 customers 2
cluster instance with 75% optional customers (left)
and a 100 customers random instance with 75 % op-
tional customers (right).

7. CONCLUSIONS
In this paper, we addressed a class of vehicle routing prob-

lems with two competing objectives. In order to establish
the ground for following analysis, we carefully designed and
created a set of benchmark instances for this problem class.
Characteristics of these instances are experimentally inves-
tigated by applying a well-established multi-objective evolu-
tionary approach. First results show di↵erent aspects of the
benchmark problems’ topologies like number of customers,
dynamism, and number of clusters to be gradually influen-
tial onto algorithm performance. Furthermore, a closer look
into the comparison of EA results and ILP-based methods
highlights the potential of EAs to provide good solution sets
in a single run for small problem instances. The comparison
also reveals the need for application of alternative (evolu-
tionary) multi-objective approaches and for integration of
more sophisticated local search mechanisms. Thus, this pa-
per may be considered as fundamental work proposing a
valid set of benchmarking instances, and allowing for in-
sights into algorithmic challenges posed by the considered
problem class. Starting from this, more rigorous analysis
of the benchmarking set as well as algorithm tuning and
development are promising future directions of research.

8. REFERENCES
[1] D. Applegate, W. Cook, S. Dash, and A. Rohe.

Solution of a min-max vehicle routing problem.
INFORMS J. on Computing, 14(2):132–143, 2002.

[2] J.-F. Berube, M. Gendreau, and J.-Y. Potvin. An
exact "-constraint method for bi-objective
combinatorial optimization problems: Application to
the traveling salesman problem with profits. Eur. J.
Oper. Res., 194(1):39–50, 2009.

[3] J. Bossek. netgen: Network Generator for
Combinatorial Graph Problems, 2015. R package v1.0.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A
fast and elitist multiobjective genetic algorithm:
NSGA–II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

[5] M. Dell’Amico, F. Ma�oli, and P. Vaerbrand. On
prize-collecting tours and the asymmetric travelling
salesman problem. International Transactions in
Operational Research, 2(3):297–308, 1995.

[6] J. Durillo and A. Nebro. jMetal: A Java framework

for multi-objective optimization. Advances in
Engineering Software, 42:760–771, 2011.

[7] D. Feillet, P. Dejax, and M. Gendreau. Traveling
salesman problems with profits. Transportation
Science, 39(2):188–205, 2005.

[8] C. Filippi and E. Stevanato. Approximation schemes
for bi-objective combinatorial optimization and their
application to the tsp with profits. Computers &
Operations Research, 40(10):2418–2428, 2013.

[9] C. Fonseca and P. Fleming. On the performance
assessment and comparison of stochastic
multiobjective optimizers. In H.-M. Voigt et al.,
editors, Parallel Problem Solving from Nature, PPSN
IV, pages 584–593. Springer Berlin Heidelberg, 1996.

[10] B. L. Golden, L. Levy, and R. Vohra. The orienteering
problem. Nav. Res. Log., 34(3):307–318, 1987.

[11] M. Hahsler and K. Hornik. Tsp – Infrastructure for
the traveling salesperson problem. Journal of
Statistical Software, 23(2):1–21, December 2007.

[12] R. Jonker and T. Volgenant. Transforming asymmetric
into symmetric traveling salesman problems. Oper.
Res. Lett., 2(4):161–163, November 1983.

[13] N. Jozefowiez, F. Glover, and M. Laguna.
Multi-objective meta-heuristics for the traveling
salesman problem with profits. Journal of Math.
Modelling and Algorithms, 7(2):177–195, 2008.

[14] M. G. Kantor and M. B. Rosenwein. The orienteering
problem with time windows. The Journal of the
Operational Research Society, 43(6):629–635, 1992.

[15] C. P. Keller and M. Goodchild. The multiobjective
vending problem: A generalization of the traveling
salesman problem. Environ. Planning B: Planning
Design, 15(2):447–460, 1988.

[16] S. Meisel. Anticipatory Optimization for Dynamic
Decision Making, Springer New York, 2011.

[17] O. Mersmann, B. Bischl, J. Bossek, H. Trautmann,
M. Wagner, and F. Neumann. Local search and the
traveling salesman problem: A feature-based
characterization of problem hardness. In Y. Hamadi
and M. Schoenauer, editors, Proc. LION 6, pages
115–129. Springer, 2012.

[18] O. Mersmann, B. Bischl, H. Trautmann, M. Wagner,
and F. Neumann. A novel feature-based approach to
characterize algorithm performance for the traveling
salesman problem. Annals of Mathematics and
Artificial Intelligence, 69:151–182, 2012.

[19] Z. Michalewicz. Genetic Algorithms + Data Structures
= Evolution Programs. Springer, Berlin, 3rd ed., 1999.

[20] V. Pillac, M. Gendreau, C. Guéret, and A. L.
Medaglia. A review of dynamic vehicle routing
problems. Eur. J. Oper. Res., 225(1):1–11, 2013.

[21] P. Vansteenwegen, W. Sou↵riau, and D. Van
Oudheusden. The orienteering problem: A survey.
Eur. J. Oper. Res., 209(1):1–10, 2011.

[22] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca,
and V. G. da Fonseca. Performance assessment of
multiobjective optimizers: An analysis and review.
IEEE Transactions on Evolutionary Computation,
7(2):117–132, 2003.

432

