
Parameterization of State-of-the-Art Performance Indicators:
A Robustness Study Based on Inexact TSP Solvers

Pascal Kerschke
University of Münster
Münster, Germany

kerschke@uni-muenster.de

Jakob Bossek
University of Münster
Münster, Germany

bossek@uni-muenster.de

Heike Trautmann
University of Münster
Münster, Germany

trautmann@uni-muenster.de

ABSTRACT
Performance comparisons of optimization algorithms are heavily in-
fluenced by the underlying indicator(s). In this paper we investigate
commonly used performance indicators for single-objective sto-
chastic solvers, such as the Penalized Average Runtime (e.g., PAR10)
or the Expected Running Time (ERT), based on exemplary bench-
mark performances of state-of-the-art inexact TSP solvers. Thereby,
we introduce a methodology for analyzing the effects of (usually
heuristically set) indicator parametrizations – such as the penalty
factor and the method used for aggregating across multiple runs –
w.r.t. the robustness of the considered optimization algorithms.
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• Computing methodologies → Optimization algorithms; •
Mathematics of computing → Combinatorial optimization;

KEYWORDS
Algorithm Selection, Travelling Salesperson Problem, Transporta-
tion, Performance Measures, Optimization

ACM Reference Format:
Pascal Kerschke, Jakob Bossek, and Heike Trautmann. 2018. Parameteriza-
tion of State-of-the-Art Performance Indicators: A Robustness Study Based
on Inexact TSP Solvers. In GECCO ’18 Companion: Genetic and Evolutionary
Computation Conference Companion, July 15–19, 2018, Kyoto, Japan, Jennifer
B. Sartor, Theo D’Hondt, and Wolfgang De Meuter (Eds.). ACM, New York,
NY, USA, Article 4, 8 pages. https://doi.org/10.1145/3205651.3208233

1 INTRODUCTION
Selecting the best suited solver from a portfolio for an unseen opti-
mization problem (prior to optimization) is termed the Algorithm
Selection Problem [12]. Much research on combinatorial optimiza-
tion problems has been conducted, mainly focussing on generating
machine-learning-based algorithm selection models, which make
use of instance features – see [10] for a general overview and [8] for
the most recent study on per-instance-based automated algorithm
selection on the Euclidean Traveling Salesperson Problem (TSP).
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A crucial part of such sophisticated modeling approaches is a
systematic, comprehensive and meaningful benchmark of candi-
date solvers on the considered instance set(s). Overall ranking of
solvers on an instance and across instances requires a suitable and
informative performance measure. Specifically for single-objective,
inexact and often stochastic solvers those involve considerations
regarding robustness (failure rate over several solver runs and / or
variability of runtimes on solved instances across runs) and quality
(average / best / worst runtimes).

Although commonly used performance indicators are not pa-
rameter free, they are often treated as such by using them without
thoroughly questioning implicit assumptions. For example, the
choice of a penalty factor of ten times the cutoff time in case of the
classical PAR10-score [1] is state of the art – but has been heuris-
tically set. Moreover, the way of aggregating runtimes might be
varied as well. Both, arithmetic mean and median, are frequently
used candidates, but a generalization of the 50%-quantile (i.e., the
median) to general p-quantiles allows to vary the required degree
of solver robustness across runs. The latter indicator will be in-
troduced as Penalized Quantile Runtime (PQR). In [8], it was used
with p = 0.5 for the comparison of inexact solvers on the Euclidean
TSP. Here, we vary the parametrizations of PAR and PQR, and illus-
trate their effects based on the benchmark from [8], which is also
publicly available in the ASLib [1] (http://www.coseal.net/aslib/).
Moreover, we compare their properties to a performance indicator
that is predominantly used in single-objective continuous black-box
optimization, the Expected Running Time (ERT, [5]), and examine
the effects of different penalty factors (for unsuccessful runs).

This extensive study presents the means for thoroughly investi-
gating the behaviour of state-of-the-art inexact TSP solvers in terms
of robustness across runs and solver quality. Our results support the
superiority of EAX+restart within the recent algorithm selection
study on TSP [8] – independent from the underlying parametriza-
tion of the performance indicators. This is likely caused by the
solver’s rather low variability and failure rates across its runs.

The presented analysis and visualization therefore provides a
structured approach on how to assess the sensitivity of a bench-
mark study w.r.t. altered requirements in terms of solver robustness
across runs. Those requirements can be implicitly set by means of
respective performance measure parametrizations.

Section 2 elaborates on the algorithm selection problem in TSP,
while Section 3 provides a detailed overview of the performance
indicators that are underlying our study – including proposed vari-
ations of the latter. The experimental setup is given in Section 4
and respective results are presented in Section 5. Conclusions are
drawn in Section 6.
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2 ALGORITHM SELECTION IN TSP
The Travelling Salesperson Problem (TSP) is a well-known combi-
natorial optimization problem of high practical relevance, e.g., in
printed circuit board (PCB) design. Given an undirected complete
graphG = (V ,E) with node setV = {1, . . . ,n} and edge set E, each
edge {i, j} ∈ E, 1 ≤ i, j ≤ n is associated with a scalar positive
real-valued distance di j ∈ R>0. A Hamiltonian cycle inG is a (sales-
person) tour that starts in a source node, visits each node exactly
once and returns back to the source. The classical TSP optimization
problem deals with finding a Hamiltonian cycle with minimal sum
of edge weights among all possible Hamiltonian cycles.

Unfortunately, TSP is NP-hard1 and thus – as most experts
assume – there seems to be no deterministic solver, that solves each
problem instance to optimality within a guaranteed polynomial
runtime bound. However, researchers developed several very well-
performing inexact heuristic approaches over the past decades such
as LKH [6], EAX [11] as well as restart variants of them [3], which
partially solve even large problem instances within reasonable time
and define the state of the art in inexact TSP solving.

There is no free lunch in optimization due to the NFL-theorems
by Wolpert and Macready [14] and thus in general different (TSP)
solvers exhibit complementary performance on different problem
instances. Per-instance automatic algorithm selection (AS) [12] aims
for selecting an algorithm from a so-called portfolio of algorithms
on a per-instance basis, which most likely will perform best on
the instance at hand (see [10] for a survey). AS methods aim to
overcome the limitations of single solvers with a machine-learning-
based smart meta-layer. Recently, we improved upon state-of-the-
art performance in inexact TSP solving utilizing per-instance AS
[8, 9]. The working principles of AS-methods rely, among other
components, on the choice of the performance measure utilized to
assess solver performance. Next, we discuss two commonly used
performance measures and introduce variations of them.

3 VARIATIONS OF EXISTING INDICATORS
Let us consider a set of stochastic algorithms A = {A1, . . . ,AnA

}

and a set of problem instancesI = {I1, . . . , InI
}. In the AS-scenario,

the performance of a solver on a set of instances is commonly
quantified using a scalar performance measure. The computation
of the measure is performed in two steps: 1) aggregation over the
algorithm runs and 2) aggregation of the aggregated runtimes over
the instance set. Here, we focus on the first step as the most crucial
part in our view. In the second step, the arithmetic mean is used,
although this might be up to discussion as well.

Let A ∈ A be a solver and I ∈ I a problem instance. Since A is
stochastic we apply A on I form > 1 times each, which results in
empirical runtimes rA, I1 , . . . , r

A, I
m .

Penalized Average Runtime. A common measure used in the field
of combinatorial optimization is the so-called penalized average
runtime (PAR, [1]). Given a maximum runtime T > 0, i.e., the so-
called cutoff-time, and a penalty factor f > 1 the PAR-score is
defined as follows:

PARA, I (f ) :=
1
m

m∑
i=1

r̃A, Ii with r̃A, Ii =

{
f ·T , if rA, Ii > T

rA, Ii , otherwise.

1This follows directly from the NP-hardness of the Hamiltonian cycle problem [7].

Hence, the measure averages the runtimes of A on I . Runs which
do not find the optimal solution until T are penalized with f ·T .

Penalized Quantile Runtime. Since the arithmetic mean is very
prone to outliers, we propose a more robust and parametrizable
version denoted as Penalized Quantile Runtime (PQR). Here, as the
name suggests, we utilize p-quantiles for aggregation in favour of
the arithmetic mean. Based on the above definitions and ap-quantile
with p ∈ (0, 1], the performance indicator is defined as:

PQRA, I (p, f ) :=

{
f ·T , if

∑m
i=1 1{r

A, I
i < T } < ⌊mp + 1⌋

qp (r
A, I
1 , . . . , r

A, I
m ), otherwise.

That is, a run is assumed to be unsuccessful (or failed), if less than
p · 100% of them runs reached the optimum within the runtime
limit. Otherwise, the algorithm is considered successful and the
measure corresponds to the p-quantile (qp ) of the runtimes rA, Ii .

Expected Runtime. The Expected Runtime (ERT), as proposed
in [5], is usually adopted in benchmarking single-objective contin-
uous black-box optimization algorithms. It is defined as:

ERTA, I =
1
s

s∑
j=1

rA, Ii j
+

(
1 − ps
ps

)
·T =

1
s

©­«
s∑
j=1

rA, Ii j
+ (m − s) ·T

ª®¬ ,
where s =

∑n
i=1 1{r

A, I
i < T } is the number of successful runs,

ps = s/m is the (estimated) probability of success and i1, . . . , is are
the indices of successful runs.

Penalized Expected Runtime. As an extension to the regular ERT,
we introduce a slightly modified version, which – similar to PAR
and PQR – penalizes failed runs with a penalty factor f :

PERTA, I (f ) =
1
s

s∑
j=1

rA, Ii j
+

(
1 − ps
ps

)
· f ·T

=
1
s

©­«
s∑
j=1

rA, Ii j
+ (m − s) · f ·T

ª®¬ .
A penalty factor f = 1 obviously results in the definition of the
regular ERT. Note that in contrast to the rather robust PQR, single
runs have a much higher leverage on the overall performance of
PAR, ERT and PERT.

4 EXPERIMENTAL SETUP
In the following we analyze different aspects of the performance
measures which were introduced in Section 3. First, we take a de-
tailed look at the effect of varying the quantileq of the PQR indicator.
Next, keeping q fixed, we address the effect of the penalty factor f .
The interaction between both parameters is studied subsequently.
Finally, we compare PQR (mainly used in the discrete domain) and
PERT (originated in the continuous domain). We base our analyses
on the most recent comprehensive performance benchmark [8] of
five state-of-the-art inexact TSP solvers which were compared on a
set of 1 845 instances out of six TSP benchmark sets.

4.1 TSP Solvers and Benchmarks
The optimization algorithms considered in [8] are a genetic algo-
rithm [4] with edge assembly crossover (EAX, [11]), Helsgaun’s
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Table 1: This table is a slightly modified version of a table
from [8]. It lists for how many instances a solver was the
only one to achieve the best performance (unique), tied with
others for the best performance (shared), or failed to find an
optimal solution (failed). In addition, it also aggregates the
performances based on PQR(0.5, 10)-scores (in seconds).

TSP Measure EAX EAX LKH LKH MAOSSet +rest. +rest.

RUE

Unique 52 66 223 226 22

(600)

Shared 1 1 10 10 0
Failed 157 0 18 2 106

PQR(0.5, 10) 9430.92 21.21 1135.67 159.79 6377.80

VLSI

Unique 3 5 4 6 0

(18)

Shared 0 0 0 0 0
Failed 2 0 2 0 2

PQR(0.5, 10) 4004.18 6.35 4008.29 47.23 4011.35

TSPLIB

Unique 8 2 5 6 1

(22)

Shared 0 0 0 0 0
Failed 5 1 2 1 2

PQR(0.5, 10) 8185.08 1649.51 3332.99 1679.79 3282.30

National

Unique 3 0 1 1 0

(5)

Shared 0 0 0 0 0
Failed 0 0 0 0 1

PQR(0.5, 10) 4.92 5.14 29.03 16.53 7209.53

Netgen

Unique 156 216 92 108 20

(600)

Shared 7 7 1 1 0
Failed 77 0 18 13 92

PQR(0.5, 10) 4627.24 12.99 1190.55 862.97 5532.35

Morphed

Unique 152 229 94 87 27

(600)

Shared 8 7 3 4 0
Failed 114 0 22 9 93

PQR(0.5, 10) 6846.10 16.72 1444.99 654.08 5593.25

Total

Unique 374 518 419 434 70

(1845)

Shared 16 15 14 15 0
Failed 355 1 62 25 296

PQR(0.5, 10) 6934.81 36.30 1305.34 565.85 5789.98

variant of the Lin-Kernighan Heuristic (LKH, [6]), a multi-agent
optimization system (MAOS, [15]) and modified versions of EAX
and LKH (denoted EAX+restart and LKH+restart), which use an
additional restart mechanism as proposed by [3]2. Each of these
five solvers was executed on three artificial TSP benchmarks (RUE,
Netgen and Morphed), as well as on three sets of real-world prob-
lems (TSPLIB, VLSI and National). Further information on each of
these TSP sets is given in [8].

4.2 Benchmark Results
Within [8], we compared the performances of the aforementioned
five state-of-the-art inexact TSP solvers on six benchmark sets. Al-
though the performance measures within [8] were called PAR10,
their correct notation should have been PQR(0.5, 10). Table 1 sum-
marizes the results per TSP set and solver. It lists 1) how often a
solver was the only solver (unique) to have the best performance
of all five solvers on an instance, and 2) how often two (or more)

2As our study focusses on the parametrization of performance indicators, we applied
our method to an existing, publicly available data set (http://www.coseal.net/aslib/)
and hence did not consider recent developments in inexact TSP solving such as [13].

solvers shared the best performance. For instance, for 223 of the 600
RUE instances LKH found the optimal solution faster than any of
the other four solvers and for ten further instances, it again found
the optimum fastest – but another solver (probably LKH+restart)
found the optimumwithin the same time. In addition, Table 1 shows
how often a solver did not find the optimum within the given cutoff
time (of 1 hour) meaning less than six out of ten runs were success-
ful on an instance as the 50%-quantile is used. For instance, LKH
failed to find the optimum for 18 of the 600 RUE instances.

Performances were also measured using PQR(0.5, 10). According
to that score, EAX+restart (highlighted in bold face) was the port-
folio’s single best solver (SBS). That is, on average (across the entire
benchmark) it found the optimum of an instance in 36.30s and
thus much faster than any of the other four solvers. Although the
second restart-approach (LKH+restart) found the optimal solution
on average approximately 15 times slower (565.85s) than the SBS,
it clearly outperformed the remaining solvers.

However, it is unclear howmuch these findings are influenced by
the chosen performance measure, PQR(0.5, 10), specifically by the
size of the penalty factor and the considered quantile probability.
The influence of these parameters will be analyzed in detail within
the subsequent results section.

5 RESULTS
5.1 Quantile Effects on the Performance
Table 2 summarizes the effects of varying quantile probabilities
on the performance of the five considered TSP solvers. More pre-
cisely, in our experiments, the runtimes across the ten runs on
an instance are aggregated by five different quantiles qp , p ∈

{0.10, 0.25, 0.50, 0.75, 0.90}. While the 10%-quantile provides a soft
(= solver-friendly) aggregation approach (only two successful runs
are needed such that the entire instance is considered to be solved
successfully and consequently its PQR-score is based on non-pena-
lized runtimes), the 90%-quantile can be seen as a hard threshold as
all ten runs need to be solved successfully in order to avoid runtime
penalties. In previous studies, the median (i.e., the 50%-quantile)
was used by default and we thus highlighted the corresponding
performances by solid lines above and below the respective rows.

The left half of Table 2 lists the number of failed instances per
TSP set, quantile and solver. While it is not surprising that the num-
ber of failed instances is non-decreasing for increasing quantiles,
one can detect clear differences among the solvers. Noticeably, the
two restart solvers (EAX+restart and LKH+restart) are very robust
solvers, as the number of failed instances increases – if at all – just
by a few instances for growing quantiles (apart from LKH+restart
on the more structured instance sets Netgen and Morphed). In
contrast to that, the performances of the remaining solvers much
stronger depend on the quantiles and – especially in case of EAX
and MAOS – rapidly grow for the two larger considered quantiles
(75% and 90%). So, the current standard approach from the liter-
ature (i.e., using the median) seems to be rather solver-friendly.
For instance, an increase from the 50%- to 75%-quantile leads (on
average across all instances) to an increase of 65% (from 355 to
597 instances) to 80% (296 to 528) of failed instances for EAX and
MAOS, respectively. Similarly, an increase from the 75%- to the
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Table 2: Influence of quantiles qp , p ∈ {0.10, 0.25, 0.50, 0.75, 0.90}, used for aggregating the runs of an instance. Their impacts are
measured per solver and TSP set w.r.t. the number of failed instances (left), and the corresponding PQR(p, 10)-scores (right).

Number of Failed Instances PQR(p, 10)-Score
TSP Set Quantile

EAX EAX+rest. LKH LKH+rest. MAOS Total EAX EAX+rest. LKH LKH+rest. MAOS Total

RUE

0.10 31 0 0 0 23 600 1868.9 11.3 21.9 14.0 1398.2 5.1
0.25 78 0 9 2 56 600 4688.0 14.1 569.1 139.6 3376.4 7.0

0.50 157 0 18 2 106 600 9430.9 21.2 1135.7 159.8 6377.8 10.7

0.75 243 0 29 3 182 600 14584.9 34.4 1843.7 240.8 10932.9 17.6
0.90 413 1 60 5 333 600 24781.9 106.4 3702.8 381.4 19987.3 27.2

VLSI

0.10 0 0 0 0 0 18 4.8 4.8 84.1 10.1 12.0 3.1
0.25 1 0 1 0 1 18 2004.6 5.3 2141.7 17.7 2011.0 3.6

0.50 2 0 2 0 2 18 4004.2 6.4 4008.3 47.2 4011.4 4.4

0.75 4 0 2 0 4 18 8003.8 9.1 4045.3 150.9 8010.9 6.9
0.90 9 0 3 1 7 18 18002.3 10.8 6098.8 2040.8 14008.4 8.6

TSPLIB

0.10 2 1 1 1 1 22 3276.6 1642.0 1655.3 1647.2 1645.8 3.2
0.25 3 1 1 1 2 22 4912.7 1643.8 1713.1 1653.9 3281.9 6.2

0.50 5 1 2 1 2 22 8185.1 1649.5 3333.0 1679.8 3282.3 10.8

0.75 6 1 2 1 5 22 9821.0 1662.1 3371.1 1745.2 8190.5 23.7
0.90 9 1 3 1 9 22 14729.7 1671.1 4960.7 1792.9 14733.3 31.6

National

0.10 0 0 0 0 0 5 4.6 4.6 6.1 5.0 10.3 3.4
0.25 0 0 0 0 0 5 4.8 4.8 9.9 10.7 10.5 3.7

0.50 0 0 0 0 1 5 4.9 5.1 29.0 16.5 7209.5 4.1

0.75 1 0 0 0 2 5 7204.6 7.5 69.4 27.1 14408.7 5.3
0.90 3 0 0 0 4 5 21603.1 8.9 160.2 34.3 28802.1 5.8

Netgen

0.10 11 0 4 3 25 600 668.2 8.8 285.1 221.8 1514.5 6.8
0.25 37 0 9 7 52 600 2227.9 10.0 612.8 480.9 3133.7 7.9

0.50 77 0 18 13 92 600 4627.2 13.0 1190.6 863.0 5532.4 10.3

0.75 151 0 28 15 152 600 9066.1 19.5 1849.8 1039.8 9130.5 14.2
0.90 300 0 54 25 310 600 18003.3 28.2 3399.6 1655.8 18605.5 20.8

Morphed

0.10 19 0 6 1 28 600 1147.1 9.5 408.5 109.5 1694.1 6.7
0.25 61 0 14 5 55 600 3666.5 11.9 908.1 369.4 3313.7 8.4

0.50 114 0 22 9 93 600 6846.1 16.7 1445.0 654.1 5593.3 11.4

0.75 192 0 38 16 183 600 11526.8 25.1 2473.0 1108.7 10990.2 18.0
0.90 335 0 75 27 343 600 20102.5 35.4 4660.0 1794.7 20584.9 27.1

Total

0.10 63 1 11 5 77 1845 1237.3 29.2 253.3 132.0 1517.9 6.1
0.25 180 1 34 15 166 1845 3519.6 31.3 721.0 341.9 3253.5 7.7

0.50 355 1 62 25 296 1845 6934.8 36.3 1305.3 565.9 5790.0 10.7

0.75 597 1 99 35 528 1845 11654.6 45.6 2085.2 799.4 10313.6 16.6
0.90 1069 2 195 59 1006 1845 20861.1 75.3 3944.2 1287.5 19635.2 24.9

90%-quantile even yields an additional 80% to 90% increase of failed
instances.

Figure 1 visually supports the previous findings: while the num-
ber of failed instances for EAX+restart and LKH+restart increases
only slightly, the curves of EAX and MAOS are rather steep for
the larger quantiles. Interestingly, LKH (without additional restart
mechanism) behaves more similar to the two superior restart vari-
ants. Note that we omitted the corresponding plot for the set of
National instances, as it consisted of only five instances and addi-
tionally did not reveal any noteworthy patterns.

Based on the findings from above, we suggest to use the previ-
ously described approaches (of summarizing the number of failed
instances per solver depending on different quantiles) for analyzing
the robustness of the respective solvers.

In addition to the number of failed instances, Table 2 also sum-
marizes the PQR(p, 10)-scores of the respective triplets of TSP set,
quantile and solver. Observing the results of EAX+restart, which ex-
hibits – with the exception of the RUE data set – a constant number
of failed instances per TSP set, one can confirm that the runtimes

(and thereby the corresponding PQR-scores) continuously grow
with increasing quantiles. Of course, this is a very intuitive finding,
but it nonetheless confirms the expectations.

Comparing the PQR(p, 10)-scores to the corresponding number
of failed instances reveals that the number of failed instances have a
strong leverage on the PQR(p, 10)-scores. For instance, in case of the
VLSI benchmark, each failed instance counts 2 000s (penalty score
of 36 000s / 18 instances within the TSP set) towards the PQR(p,
10)-score. In case of the entire data, every failed instance increases
the PQR(p, 10)-score by roughly 20s (= 36 000s / 1 845 instances).

5.2 Impact of the Penalty-Factor
We now investigate the influence of the penalty factors, which are
used for penalizing the failed runs. For this purpose, we fix the
considered quantile to the default value of 50% and then compare
the PQR-scores depending on the varied penalty factors. The corre-
sponding numbers are listed in the left half of Table 3. Noticeably,
the PQR-scores for EAX+restart are always constant within a single
TSP set, except for the TSPLIB as it is the only instance set for which
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Table 3: Influence of penalty factors f ∈ {1, 2, 5, 10, 20, 50, 100} on the PQR(0.5, f )- and PERT(f )-scores of the solvers (left
and right, respectively). For the former approach the scores reveal that the penalty factors influence the results only when
(aggregated) failed instances exist among the considered TSP instances. In contrast to that, the scores based on the PERT-
approach are already contaminated by failed (single) runs.

Aggregation by means of the 50%-quantile Aggregation by means of the PERT
TSP Set Quantile

EAX EAX+rest. LKH LKH+rest. MAOS ∅ EAX EAX+rest. LKH LKH+rest. MAOS ∅

RUE

1 952.9 21.2 163.7 51.8 653.8 10.7 3711.7 28.1 401.1 85.2 2714.1 15.8
2 1894.9 21.2 271.7 63.8 1289.8 10.7 7410.0 28.7 708.8 118.6 5405.7 15.8
5 4720.9 21.2 595.7 99.8 3197.8 10.7 18504.9 30.7 1632.0 218.6 13480.2 15.8

10 9430.9 21.2 1135.7 159.8 6377.8 10.7 36996.3 34.1 3170.7 385.2 26937.8 15.8

20 18850.9 21.2 2215.7 279.8 12737.8 10.7 73979.2 40.7 6248.1 718.6 53853.1 15.8
50 47110.9 21.2 5455.7 639.8 31817.8 10.7 184927.7 60.7 15480.2 1718.6 134598.8 15.8
100 94210.9 21.2 10855.7 1239.8 63617.8 10.7 369842.0 94.1 30867.1 3385.2 269175.0 15.8

VLSI

1 404.2 6.4 408.3 47.2 411.4 4.4 1382.9 7.5 1273.6 96.6 1251.3 5.8
2 804.2 6.4 808.3 47.2 811.4 4.4 2760.7 7.5 2395.8 118.9 2489.4 5.8
5 2004.2 6.4 2008.3 47.2 2011.4 4.4 6894.0 7.5 5762.5 185.5 6203.7 5.8

10 4004.2 6.4 4008.3 47.2 4011.4 4.4 13782.9 7.5 11373.6 296.6 12394.2 5.8

20 8004.2 6.4 8008.3 47.2 8011.4 4.4 27560.7 7.5 22595.8 518.9 24775.1 5.8
50 20004.2 6.4 20008.3 47.2 20011.4 4.4 68894.0 7.5 56262.5 1185.5 61918.0 5.8
100 40004.2 6.4 40008.3 47.2 40011.4 4.4 137782.9 7.5 112373.6 2296.6 123822.7 5.8

TSPLIB

1 821.4 176.8 387.5 207.1 336.8 10.8 4172.3 1654.3 1950.1 1705.6 2373.3 16.0
2 1639.6 340.4 714.8 370.7 664.1 10.8 8340.5 3290.7 3791.0 3341.9 4736.3 16.0
5 4094.2 831.3 1696.6 861.6 1645.9 10.8 20845.1 8199.8 9313.8 8251.0 11825.3 16.0

10 8185.1 1649.5 3333.0 1679.8 3282.3 10.8 41686.0 16381.6 18518.3 16432.8 23640.2 16.0

20 16366.9 3285.9 6605.7 3316.2 6555.0 10.8 83367.8 32745.2 36927.4 32796.5 47270.1 16.0
50 40912.4 8195.0 16423.9 8225.2 16373.2 10.8 208413.3 81836.1 92154.7 81887.4 118159.7 16.0
100 81821.4 16376.8 32787.5 16407.1 32736.8 10.8 416822.3 163654.3 184200.1 163705.6 236309.1 16.0

National

1 4.9 5.1 29.0 16.5 729.5 4.1 744.9 6.6 66.6 21.5 1299.4 4.8
2 4.9 5.1 29.0 16.5 1449.5 4.1 1484.9 6.6 66.6 21.5 2588.0 4.8
5 4.9 5.1 29.0 16.5 3609.5 4.1 3704.9 6.6 66.6 21.5 6453.7 4.8

10 4.9 5.1 29.0 16.5 7209.5 4.1 7404.9 6.6 66.6 21.5 12896.6 4.8

20 4.9 5.1 29.0 16.5 14409.5 4.1 14804.9 6.6 66.6 21.5 25782.3 4.8
50 4.9 5.1 29.0 16.5 36009.5 4.1 37004.9 6.6 66.6 21.5 64439.4 4.8
100 4.9 5.1 29.0 16.5 72009.5 4.1 74004.9 6.6 66.6 21.5 128868.0 4.8

Netgen

1 469.2 13.0 218.6 161.0 564.4 10.3 1794.6 16.6 598.4 430.5 2574.3 13.5
2 931.2 13.0 326.6 239.0 1116.4 10.3 3580.0 16.6 1038.7 730.3 5131.8 13.5
5 2317.2 13.0 650.6 473.0 2772.4 10.3 8936.2 16.6 2359.5 1629.7 12804.1 13.5

10 4627.2 13.0 1190.6 863.0 5532.4 10.3 17863.3 16.6 4560.8 3128.8 25591.4 13.5

20 9247.2 13.0 2270.6 1643.0 11052.4 10.3 35717.3 16.6 8963.4 6126.9 51165.9 13.5
50 23107.2 13.0 5510.6 3983.0 27612.4 10.3 89279.4 16.6 22171.3 15121.1 127889.5 13.5
100 46207.2 13.0 10910.6 7883.0 55212.4 10.3 178549.7 16.6 44184.4 30111.6 255762.1 13.5

Morphed

1 690.1 16.7 257.0 168.1 571.3 11.4 2709.7 20.9 817.7 339.4 2811.9 16.3
2 1374.1 16.7 389.0 222.1 1129.3 11.4 5406.3 20.9 1462.3 534.7 5607.2 16.3
5 3426.1 16.7 785.0 384.1 2803.3 11.4 13496.4 20.9 3395.9 1120.3 13993.1 16.3

10 6846.1 16.7 1445.0 654.1 5593.3 11.4 26979.9 20.9 6618.7 2096.4 27969.7 16.3

20 13686.1 16.7 2765.0 1194.1 11173.3 11.4 53946.8 20.9 13064.1 4048.5 55922.8 16.3
50 34206.1 16.7 6725.0 2814.1 27913.3 11.4 134847.5 20.9 32400.6 9904.9 139782.0 16.3
100 68406.1 16.7 13325.0 5514.1 55813.3 11.4 269682.0 20.9 64628.0 19665.7 279547.5 16.3

Total

1 700.7 18.7 216.6 126.8 591.9 10.7 2737.1 41.1 626.8 299.4 2678.3 15.1
2 1393.3 20.7 337.5 175.6 1169.5 10.7 5462.6 60.9 1112.6 491.0 5338.1 15.1
5 3471.4 26.5 700.5 321.9 2902.2 10.7 13638.9 120.0 2569.9 1065.7 13317.4 15.1

10 6934.8 36.3 1305.3 565.9 5790.0 10.7 27266.1 218.7 4998.7 2023.4 26616.3 15.1

20 13861.6 55.8 2515.1 1053.7 11565.6 10.7 54520.4 416.0 9856.3 3938.9 53214.0 15.1
50 34642.1 114.4 6144.4 2517.1 28892.4 10.7 136283.5 1007.8 24429.1 9685.5 133007.3 15.1
100 69276.3 211.9 12193.1 4956.1 57770.5 10.7 272555.3 1994.3 48717.1 19263.1 265996.1 15.1

EAX+restart failed on one instance (Table 2) – all other instances
were solved successfully.

Table 3 also reveals that the impact of the penalty factor is close
to linear. That is, if one compares the PQR(0.5, 1)- and PQR(0.5,
10)-scores, they will roughly differ by factor 10. The same holds
true for a comparison of PQR(0.5, 10) to PQR(0.5, 100).

Investigating the penalized performance scores of EAX+restart
across the entire benchmark (TSP set = Total), a linear relation-
ship between the penalty factors and the PQR-scores can be ob-
served. Neglecting any penalty-effects, i.e., looking at PQR(1, q),
the impact of a single failed instance is approximately 2s (= 3 600s
/ 1 845 instances). This impact grows to 4s (for penalty factor 2),
10s (f = 5), 20s (f = 10), etc. and thus perfectly aligns with the
observed increase in (penalized) performances. In consequence, one
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can conclude that the number of failed instances, as well as the
penalty factor linearly influence the respective PQR-scores.

These linear relationships also become visible in Figure 2, which
displays the growth in (penalized) performances depending on the
size of the penalty factors for all but the Morphed instance set
(which provide qualitatively similar results as Netgen). For better
comparability and visibility of the results, all PQR-scores were
scaled by the respective performance of EAX+restart. As a result,
the curves of EAX+restart (dashed blue lines) constantly exhibit
a value of 1.0, whereas all other curves are linearly growing with
increasing penalty factors. Again, the only exception to these linear
relationships are the results of the TSPLIB as in that scenario the
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Figure 1: Ratio of unsolved TSP instances per solver and
TSP set, and subject to five different quantiles qp with
p ∈ {0.10, 0.25, 0.50, 0.75, 0.90}. While EAX+restart and LKH+
restart solve most instances constantly (i.e., robust and in-
dependent of the quantile), EAX and MAOS perform poorly
when using the 90%-quantile for aggregating the runs.
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Figure 2: Impact of the penalty factors f ∈ {1, 2, 5, 10, 20, 50,
100} on the PQR-scores. All performances were a priori
scaled by the corresponding ones of EAX+restart.

results of EAX+restart are also influenced by a failed instance.When
comparing e.g., the performances of EAX+restart and LKH+restart
on the TSPLIB, both solvers have an identical amount of failed
instances (1) within that TSP set and therefore, the standardization
of (penalized) performances basically displays the differences in the
solvers’ runtimes on all remaining 21 successfully solved instances.

5.3 Joint Impact of Quantile and Penalty Factor
So far, we have analyzed the effects of the quantiles (see Section 5.1)
and penalty factors (Section 5.2), separately. Now we have a closer
look at their combined influence. We computed the performances
per optimization algorithm and TSP set for each pair of penalty
factor and quantile, standardized the performances by the respec-
tive values of EAX+restart and visualized the resulting ratios as
heatmaps in Figure 3. Due to the large magnitudes of the ratios,
their values are visualized in log-scale for better recognizability.
Within each of the single heatmaps, the previously discussed values
are highlighted: the impact of the quantiles based on a fixed penalty
factor of 10 (Section 5.1) are framed by white dashed lines, and the
influence of the penalty factors, given an aggregation by means of
the median (Section 5.2) are highlighted by white dotted lines.

The heatmaps reveal the following: First, the second row of
heatmaps (i.e., the ones for EAX+restart) are entirely purple. This
is plausible as all PQR values were scaled by the performances
of EAX+restart and thus, all ratios within those heatmaps have a
value of 1. Second, for some data sets (such as National or VLSI),
the quantiles have a larger impact on the PQR scores than the
penalty factors. For instance, the first three columns of EAX on
the National instances are completely of purple color, indicating
that the performance of EAX is quite comparable to the one of
EAX+restart on these instances. The tiles of the following two
columns are colored between green and yellow, indicating that the
performance of EAX strongly decreases compared to EAX+restart.
However, for the penalty factor a similar trend can be observed: the
larger the penalty factor, the brighter are the corresponding colors
(see for instance the heatmap of LKH on the Netgen data).

The heatmaps do not only reveal linear trends per penalty factor
or quantile (separately), but one can also observe “diagonal” trends
in the coloring from the bottom left (small quantile and penalty
factor) to the top right (large quantile and penalty factor) of a
heatmap. For instance, EAX and MAOS show such a pattern on
Netgen or VLSI. Thus, such solvers performmuch more competitive
to EAX+restart in case of solver-friendly aggregations (by means of
small quantiles) and no or low penalization of the failed instances
than for large quantiles and high penalty scores.

Interestingly, the results on the RUE data reveal U-shaped pat-
terns (for all solvers) implying that for extreme quantiles (10% and
90%), the solvers perform more similar to EAX+restart (on this
benchmark) than for the intermediate quantiles (25% to 75%).

5.4 Comparison of PERT(f) and PQR(0.5, f)
Performances of combinatorial solvers are usually measured in
actual runtimes (i.e., they are measured in time units) and after-
wards aggregated by PAR- or PQR-scores. In contrast to that, perfor-
mances of solvers of continuous optimization problems are usually
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measured by means of function evaluations and afterwards evalu-
ated using the ERT. The reasoning for using function evaluations
rather than actual runtimes is that 1) for real-world problems a sin-
gle evaluation can be quite costly, and 2) runtimes mainly depend
on the computational resources and thus are incomparable across
different machines; even on the same machine, the runtimes for
several runs of identical experiments will likely not be identical.

However, the definition of the ERT does not restrict its applica-
bility to continuous optimization problems; one simply needs the
solver’s runtime (actual runtime, function evaluations, etc.) and
runstatus (successful / unsuccessful) per run. Hence, one could also
assess the performances of the TSP solvers by means of the ERT.

A benefit of using the ERT instead of the previously analyzed
PQR(0.5, 10)-approach is that every single run counts – and thereby
impacts the solver’s performance on that instance. While aggregat-
ing all runs of an instance by means of the median (or any other
quantile) provides a very robust measure – it basically uses the
runtimes of only one or two runs – the magnitudes of all the other
runs are completely ignored. In contrast to that, the ERT, which
was defined as ERTA, I = (

∑s
j=1 r

A, I
i j
+ (m − s) ·T )/s (see Section 3),

uses the information of all runtimes as its numerator is the sum
of the runtimes (including cutoff time T for each failed run). As
a consequence of this, the ERT is not robust. More precisely, it
is very prone to changes within the runtimes, especially to more
extreme observations such as failed runs. Even worse, every single
unsuccessfully finished run penalizes the ERT twice: on the one
hand, the numerator grows (each failed run costs at least the given

cutoff time, which is larger than the runtime of any successfully
completed run), and on the other hand the denominator decreases
(as s is the sum of successful runs).

In addition to that, we also analyzed whether a penalized version
of the ERT, i.e., PERTA, I (f ) = (

∑s
j=1 r

A, I
i j
+ (m − s) · f ·T )/s , makes

sense. The right half of Table 3 summarizes the PERT(f )-values.
Obviously, the performances for penalty factor f = 1 correspond to
the classical usage of ERT – i.e., without any additional penalization.
As one can see for the values of EAX+restart, the values do not
change if all runs were solved successfully. However, once a single
run failed (as it occurs within the RUE data), the penalty factor influ-
ences the results. Furthermore, the PERT(f )-scores are larger than
the ones from the previously described PQR(0.5, f )-approach. This
finding is not very surprising as the PERT can be much larger, due
to the denominator of the ERT computation. In case of a fixed cutoff
time of 3 600s andm = 10 runs, the ERT exhibits values between 0s
and up to 36 000s . More generally, the upper boundary of the PERT
can be computed via cutoff time T × #runsm × penalty factor f .

Figure 4 visually compares the effects of the different penalty
factors 1, 2, 5, 10, 20, 50 and 100 on the performances of EAX+restart
(purple curve) and LKH+restart (green) for the two previously de-
scribed approaches, i.e., median (solid line with a bullet for each
observed value) and ERT (dashed line with triangles). Again, for
better comparability of the results, the performances were first stan-
dardized by the ones of EAX+restart under the median approach.
As discussed before, the ERT values (dashed lines) are larger than
the corresponding ones of the median approach. Also, in case the
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algorithms solved all runs of the entire benchmark (as it is the case
for the National benchmark), the penalty factors have no influence
on the performances and thus, all four curves are horizontal lines.
Noticeably, the linear leverage of the penalty factors on the perfor-
mances, which we already detected and discussed in Section 5.2
for the median-approach, also exists for the ERT approach (see e.g.,
the results of LKH+restart on RUE, Netgen or VLSI).

6 CONCLUSIONS
Parametrizations of the penalized quantile runtime as a generaliza-
tion of penalized average runtime (PAR) and the expected running
time (ERT) were systematically investigated on a comprehensive
benchmark study of inexact TSP solvers.

It could be shown that the quantile used for aggregating run-
times across solver runs on an instance substantially influences
the robustness requirement of a solver, i.e., larger quantiles require
solvers to successfully complete a higher percentage of runs. Thus,
the performance assessment of robust solvers, such as EAX+restart,
which rarely fails on any instance, will be much less influenced by
the choice of the quantile. In fact, no parametrization changed the
result of EAX+restart being the single best solver within the fo-
cussed TSP benchmark study. Varying the penalty factor of course
only influences failed runs but allows for altering the leverage
they have regarding differences in algorithm performance between
solvers which is important for instance-based automated algorithm
selection selection techniques.

Transferring the concept of ERT to combinatorial optimization
problems in terms of relying on runtimes rather than function
evaluations as commonly used in continuous black-box optimiza-
tion is possible. However, one should be aware that ERT is much
more prone to the results of single runs than the more robust PQR-
approach as results of all runs are included. Failed runs thus have a
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Figure 4: Comparison of the influences of the penalty
factors on the performance scores, shown for two ap-
proaches – the ‘classical’ median-PQR-approach (solid line)
and the ERT (dashed) – and two optimization algorithms,
EAX+restart (purple) and LKH+restart (green).

huge impact on the ERT performance – which increases even more
in case a penalty factor is used.

Future studies will focus on theoretically investigating perfor-
mance indicator properties as well as on introducing alternative
and robust indicators using the insights of this study. This could
also lead to taking a multi-objective perspective onto performance
measurement, e.g., by directly investigating the trade-off between
the fraction of failed runs and the average runtime of a solver [2].
Moreover, results will be discussed within the context of automated
algorithm selection and configuration on TSP. Applications to the
continuous domain are of interest as well.
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