
JID:TCS AID:13585 /FLA [m3G; v1.327] P.1 (1-23)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A study on the effects of normalized TSP features for

automated algorithm selection ✩

Jonathan Heins a,∗, Jakob Bossek b, Janina Pohl c, Moritz Seiler c,
Heike Trautmann c, Pascal Kerschke a

a Big Data Analytics in Transportation TU Dresden, Dresden, Germany
b AI Methodology, RWTH Aachen University, Aachen, Germany
c Statistics and Optimization, University of Muenster, Muenster, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 March 2022
Received in revised form 6 October 2022
Accepted 11 October 2022
Available online xxxx

Keywords:
Feature normalization
Algorithm selection
Traveling salesperson problem

Classic automated algorithm selection (AS) for (combinatorial) optimization problems
heavily relies on so-called instance features, i.e., numerical characteristics of the problem
at hand ideally extracted with computationally low-demanding routines. For the traveling
salesperson problem (TSP) a plethora of features have been suggested. Most of these
features are, if at all, only normalized imprecisely raising the issue of feature values
being strongly affected by the instance size. Such artifacts may have detrimental effects
on algorithm selection models. We propose a normalization for two feature groups which
stood out in multiple AS studies on the TSP: (a) features based on a minimum spanning
tree (MST) and (b) nearest neighbor relationships of the input instance. To this end we
theoretically derive minimum and maximum values for properties of MSTs and k-nearest
neighbor graphs (NNG) of Euclidean graphs. We analyze the differences in feature space
between normalized versions of these features and their unnormalized counterparts. Our
empirical investigations on various TSP benchmark sets point out that the feature scaling
succeeds in eliminating the effect of the instance size. A proof-of-concept AS-study shows
promising results: models trained with normalized features tend to outperform those
trained with the respective vanilla features.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

The Euclidean traveling salesperson problem (TSP) is a prominent NP-hard combinatorial optimization problem of huge
practical relevance, e.g., for the fabrication of printed circuit boards as well as for transportation and logistics applications.
The problem can be described as follows: we are given a complete undirected graph G = (V , E) with n = |V | nodes, node
set V = {1, . . . , n} and pairwise distances d(i, j), 1 ≤ i, j ≤ n between the nodes which are determined by the Euclidean
metric. The goal is to compute a tour of minimal length that visits each city exactly once and eventually returns to the start
of the tour. Formally, we seek a permutation π : V → V that minimizes the cost function

✩ Conference version published at FOGA2021.

* Corresponding author.
E-mail address: jonathan.heins@tu-dresden.de (J. Heins).
https://doi.org/10.1016/j.tcs.2022.10.019
0304-3975/© 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2022.10.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:jonathan.heins@tu-dresden.de
https://doi.org/10.1016/j.tcs.2022.10.019

JID:TCS AID:13585 /FLA [m3G; v1.327] P.2 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
c(π) = d(π(n),π(1)) +
n−1∑
i=1

d(π(i),π(i + 1)).

The TSP has been an intriguing problem in research for decades. It has ever since served as a test-bed for algorithmic
ideas ultimately culminating in the development of the highly sophisticated exact TSP solver concorde [1] and several very
well-performing heuristics such as the local-search algorithm LKH [12] and the genetic algorithm EAX [23,24].

Both algorithms perform well on different TSP instances potentially with a large performance gap to each other [8]
which motivates per-instance automated algorithm selection (AS) for the TSP. In the past decade, during the rise of machine
learning and more precisely AS-related research, the TSP continued to attract researchers [4,5,8,9,14,17,19,22,25,27,33,34].
In the context of AS, initiated by Rice in the 1970s [30], the core idea is to predict – by means of machine learning models
termed selectors in this field – the most likely best-performing solver for a given problem instance I ∈ I from a set A of
at least two candidate solvers (see [16,18] for recent surveys on AS). In classic AS approaches the instance space I in the
selector-mapping S : I → A is replaced by a p-dimensional feature-space F ⊂ Rp , and each instance is mapped to the
feature space by a computationally low-demanding function f : I →F . The selector can be replaced by S :F →A.

In order to numerically characterize TSP problems, hundreds of features were developed by several groups [14,22,27].
Exemplary features that stand out in several studies as crucial performance-discriminating features, are based on properties
of a minimum spanning tree (MST) of the graph at hand (e.g., summary statistics of the depth of nodes in the MST) or
statistics of nearest neighbor relationships including weakly/strongly connected components (CCs) of a so-called k-nearest-
neighbor graph transformation (k-NNGs) of the source graph, e.g., the number of CCs or the size of the largest CC. However,
until now, those features were used in an unnormalized way which may be detrimental and is certainly against intuition.
As an example say we have two graphs G1 with 30 nodes and G2 with 3 000 nodes respectively. The number of weakly
connected components in the 2-NNG may be up to 10 for G1 and 1 000 for G2 as we shall see later, although the pattern of
weakly connected components in the 2-NNG is the same for both graphs, i.e., a collection of 3-cliques.1 Such artifacts may
induce a negative impact on algorithm selection due to features being dependent on the instance size. This motivated the
conference version of this work [11] and its extension presented in this paper. The aim is to introduce normalized versions
of established TSP features

fnorm : I → Fnorm ⊆ [0,1]p .

The respective normalization is based on the theoretical derivation of minimum and maximum values of MST- and nearest
neighbor relationship features which proved to have considerable discriminating impact on AS models in previous works [17,
27]. This is a substantial and mathematically sound extension of preliminary normalization efforts [27], in which the feature
values have been divided by the instance size.

We will show that our normalized features not only improve the understanding of feature and algorithm performance
relations but also allow for constructing high-performing AS models on the Euclidean TSP across instance sizes. Section 2
provides the theoretical concept of our normalization approach together with the respective normalized feature variants.
Compared to the conference version, the considered feature groups are extended by distance based features in this paper.
Following is an overview of the considered instance sets and inexact TSP solvers in Section 3. An exploratory illustration of
the feature normalization effects on widely used and commonly accepted TSP instance sets [17] is presented in Section 4.
A proof-of-concept AS study in Section 5 illustrates the promising potential of the introduced feature sets as input to
automated algorithm selection models. Eventually, Section 6 summarizes the paper and discusses future work.

2. Normalizing features

In this section we derive theoretical results to normalize specific features. In abstract language, given a TSP feature value
f ∈ R for a Euclidean graph G , we seek for lower and upper bounds fmin and fmax for the respective feature among all
Euclidean graphs in order to calculate the normalized feature

fnorm := f − fmin

fmax − fmin
∈ [0,1].

Deriving those upper and lower bounds of the features and normalizing with them is desired for two main reasons
in addition to general interest. First, algorithmic performance should be independent of the scaling of distances within an
instance, and therefore, selectors and the used features dependent on the distances should be independent as well. Con-
trarily, the algorithmic performance may differ depending on n, and therefore, the features should encode this information.
However, this information can be represented by one feature: the instance size. Including the information in multiple fea-
tures may introduce noise, complicating the task of a selector from a machine learning perspective. Nevertheless, in some
cases the upper and lower bounds may scale differently compared to the mean feature value over the distribution of all

1 A k-clique in a graph G = (V , E) is a subset of nodes C ⊆ V , |C | = k such that each two nodes in C are linked by an edge.
2

JID:TCS AID:13585 /FLA [m3G; v1.327] P.3 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
instances. In those cases, even a normalized feature value, encoding a certain property of an instance, may shrink or grow
with n. Subtracting the mean feature value over the distribution of all instances for given n and dividing by the standard
deviation would alleviate this problem. However, even if a uniform distribution of nodes in an instance could be assumed
representative, deriving the expected feature values is far from trivial. Coarse normalization methods, e.g., dividing by the
mean as done in [37,38], may be one approach to the problem. In the case of different scaling behaviors we deem the
derivation of upper and lower bounds important for a second reason. In recent work instances were evolved with a space
filling approach based on the upper and lower bounds [7]. This reveals new insights into what characteristics of an instance
cause different difficulty levels for the solvers. Those insights, in turn, help understand the solver behavior and ultimately
can result in better selectors.

For this study, we do not consider all 200+ TSP features from the literature for two simple reasons: (1) space limitations,
and (2) we do not have formal proofs for all feature normalizations (yet). Nevertheless, we do emphasize that a normal-
ization of all features is desirable in future. Here, we focus on two feature groups that have proven to be very promising
in discriminating solver performance in past TSP algorithm selection studies [17,27], namely features based on a minimum
spanning tree of the input graph (MST features) and the nearest neighbor relationship features (NN features). Implemen-
tations of the (normalized) features are available within the package salesperson [3] for the statistical programming
language R [28].2

2.1. Preliminaries

A graph G = (V , E) consists of a set of nodes V = {v1, . . . , vn} and a set of edges E . For brevity we denote by n := |V | and
m := |E| the respective sizes. In a directed graph each edge (u, v) between nodes u, v ∈ V has an orientation. In contrast, in
undirected graphs there is no orientation which is highlighted by the set-style notation {u, v}. Each node v ∈ V is associated
with Euclidean coordinates (xv , yv) in the Euclidean plane. A function d : V × V → R≥0 describes distances/travel costs
between pairs of nodes. d is a pseudometric and referred to as distance function in the following. The distance d(u, v)

between two nodes u, v ∈ V corresponds to the Euclidean distance of the node coordinates of u and v in the plane. A
directed path is a sequence of nodes v1, . . . , vl such that (vi, vi+1) ∈ E for 1 ≤ i < l. In an undirected path, the corresponding
undirected edges need to exist. For U ⊂ V we define by G[U] := (U , {e ∈ E | |e ∩ U | = 2}) the induced subgraph of G given U ;
G[U] contains all nodes from U and all edges which link each two nodes in U . A graph is (strongly) connected if every node
is reachable via a (directed) path from every other node. A subset of nodes C ⊂ V is called a strongly connected component if
the induced subgraph G[C] is strongly connected and there is no superset of C that is strongly connected. Likewise, C ⊂ V
forms a weakly connected component if the induced subgraph is maximally weakly connected where the latter means that
each node is reachable from any other node if edge orientations are neglected. A spanning tree of G is an acyclic subgraph
of G covering all nodes. A minimum spanning tree (MST) is a spanning tree with minimum sum of edge weights across all
possible spanning trees.

2.2. k-nearest-neighbor graph based features

An important group of TSP features relies on characteristics of local nearest-neighbor relations, i.e., nodes and their k
nearest neighbor nodes.3 This feature set was introduced by Pihera & Musliu [27] and is based on a k-NNG transformation
of the input graph (k-NNG features). Below, we give a formal definition following the notation used in [27].

Definition 2.1 (k-nearest-neighbor graph). Let G = (V , E) be a graph with distance function d : V × V → R≥0. For 1 ≤ i ≤
n − 1 let N(v, i) be the i-th nearest neighbor of node v ∈ V . Further denote by Ed

k = {(v, N(v, i)) | v ∈ V , 1 ≤ i ≤ k} and
Eu

k = {{v, N(v, i)} | v ∈ V , 1 ≤ i ≤ k} the set of directed/undirected edges between nodes and their 1 ≤ k ≤ n − 1 nearest
neighbor nodes. Then we call Gd

k = (V , Ed
k) and Gu

k = (V , Eu
k) the directed/undirected k-nearest-neighbor graph (k-NNG).

Fig. 1 gives an impression of k-NNGs for different values of k on instance a280 from the TSPLIB [29]. Given the directed
and undirected k-NNG for a fixed k, this feature group consists of the number of weakly/strongly connected components and
summary statistics of the number of nodes across weakly/strongly connected components, i.e., the mean, median, minimum,
maximum and the span. It is obvious that these take values that highly depend on the graph size n. It should be noted that
Pihera & Musliu also introduce normalized versions of these features, where normalization is achieved by dividing with
instance size n. Since n is not the maximum value achievable for most of the features (see our derivations below) we do not
consider this step as a sufficiently precise normalization. Therefore, we next derive results on the minimum and maximum
possible values in order to normalize all NNG-features mathematically soundly.

2 GitHub repository: https://github .com /jakobbossek /salesperson/.
3 Note that internally the Approximate Near Neighbor (ANN) C++ library is used to construct a k-d tree in order to search for the nearest neighbors of

each node. In the case of equidistant neighbors the later found neighbor is used. Thus, in this case the k-NNG depends on the construction of the k-d tree
which may be different if, e.g., the instance is rotated. However, this does not influence the theoretical upper and lower bounds.
3

https://github.com/jakobbossek/salesperson/
https://www.cs.umd.edu/~mount/ANN/

JID:TCS AID:13585 /FLA [m3G; v1.327] P.4 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 1. From left to right: an MST, 1-NNG, 3-NNG and 5-NNG of TSPLIB instance a280.

Theorem 2.1. For a complete undirected graph G = (V , E) with d : V × V →R≥0 and k ≥ 2 the minimal number of weakly/strongly
connected components in Gd

k and Gu
k equals one.

Proof. Consider a graph where nodes v1, . . . , vn are placed circular with equidistant distances between neighbor nodes.
Then for k = 2, in Gd

k , each node is linked to its two neighbors on the cycle via directed edges. In consequence, in Gd
k each

node can be reached from any other node, e.g., by following edges in clock-wise direction. Thus, the number of strongly
connected components equals one and so does the number of weakly connected components. Adding further edges in case
k > 2 does not change the connectivity and therefore the results transfer to the general case. �
Theorem 2.2. For a complete undirected graph G = (V , E) with d : V × V → R≥0 and k ≥ 2 the maximum number of weakly
connected components in Gu

k is
n/(k + 1)�.

Proof. Each weakly connected component contains at least k + 1 nodes since every node is linked to its k nearest neighbors
and reachability is symmetric in undirected graphs. Thus, the number of weakly components is at most
n/(k + 1)�. �

An example for a Euclidean graph with a maximal number of weakly connected components is a graph with
⌊

n
k+1

⌋
non-overlapping clusters where the inter-cluster distance is higher than the distance between any pair of nodes within a
cluster.

The following lemma will prove useful to derive the maximum number of strongly connected components in Gd
k .

Lemma 2.1. For any 0 < q < 1/2, L ≥ 0 and k ≥ 1 it holds that qL > qL+1 + qL+2 + . . . + qL+k.

Proof. Let L ≥ 0 and k ≥ 1 and 0 < q < 1. Then we have

k∑
j=1

qL+ j = qL

⎛
⎝ k∑

j=1

q j

⎞
⎠ = qL

⎛
⎝ k∑

j=0

q j − 1

⎞
⎠

= qL

(
1 − qk+1

1 − q
− 1 − q

1 − q

)
= qL

(
q − qk+1

1 − q

)

= qL+1(

<1︷ ︸︸ ︷
1 − qk)

1 − q
≤ qL+1

1 − q

where we used the geometric sum
∑n

j=0 q j = 1−qn+1

1−q for q �= 1 in the third equation. Eventually qL+1/(1 − q) < qL ⇔ q <
1 − q ⇔ q < 1/2. �
Theorem 2.3. For a complete undirected graph G = (V , E) with d : V × V → R≥0 and k ≥ 1 the maximum number of strongly
connected components in Gd

k equals n − k.

Proof. We first construct a complete Euclidean graph G = (V , E) with exactly n − k strongly connected components in Gd
k

and later argue, that more than n − k components are impossible. Consider an n-vertex path where n nodes v1, . . . , vn are
aligned from left to right. Let C = 1/3 be a constant. Place the nodes co-linear such that d(vi, vi+1) = C i for 1 ≤ i < n. In
consequence, d(v1, v2) > d(v2, v3) > . . . > d(vn−1, vn). We show that for 1 ≤ i ≤ n − k the k nearest neighbors of vi are
vi+1, . . . , vi+k . Since the distances d(vi, vi+1) are monotonically decreasing this holds if and only if d(vi, vi+k) ≤ d(vi−1, vi).
We have
4

JID:TCS AID:13585 /FLA [m3G; v1.327] P.5 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
v1 v2 v3 v4 v5

Fig. 2. Illustration of the 2-NNG graph of a 5-vertex path with strictly decreasing consecutive distances. Solid lines are forward edges, dashed lines are
backward edges. Colors indicate membership to strongly connected components; in total there are 5 − 2 = 3 here.

d(vi, vi+k) =
k−1∑
j=0

d(vi+ j, vi+ j+1) =
k−1∑
j=0

C i+ j < C i−1 = d(vi−1, vi)

where the first equality is due to the graph being Euclidean and the inequality follows from Lemma 2.1.
Hence, building the directed k-NNG up to node vn−k−1 does not introduce any cycles. However, for the latter nodes

vn−k+1, . . . , vn there need to be right-to-left (backward) edges to fill up the set of k nearest neighbors which introduces
directed cycles into the k-NNG up to node vn−k . Hence, there is one component of size n − (n −k − 1) = k + 1 which results
in a total number of n − k strongly connected components. See Fig. 2 for a visualization with k = 2.

Eventually, we argue that there cannot exist a graph G where Gd
k has strictly more than n − k strongly connected

components. To this end it is sufficient to show that there has to be one component with at least k + 1 nodes. Consider
a k-NNG Gd

k = (V G , EG) with strongly connected components containing at most l < k + 1 nodes. For the nodes vi in a
component C of Gd

k with l or less nodes it holds that there are at least k + 1 − l edges (vi, v j) ∈ EG with v j /∈ C . If each
component in Gd

k is reduced to one node, the resulting graph is still directed and must also be acyclic, otherwise not all
components have been reduced. However, each node of the new graph must have at least one outgoing edge, since there
are fewer than k + 1 nodes in each component. This leads to a contradiction, since an acyclic graph must have at least one
sink. �

We are now ready to formulate lower and upper bounds for summary statistics of the number of nodes in weakly and
strongly CCs of the k-NNG of Euclidean graphs.

Theorem 2.4. For the number of nodes in the weakly connected components of the k-NNG Gu
k of any Euclidean graph with d : V × V →

R≥0 and n
3 ≥ k + 1, the following holds:

1. The minimum and maximum values of the mean are n

n/(k+1)� and n, respectively.

2. The minimum and maximum values of the median are k + 1 and n, respectively.
3. The minimum and maximum values of the maximum are

k + 1 +
⌈

(n mod (k + 1))

n/(k + 1)�
⌉

and n, respectively.
4. The minimum and maximum values of the minimum are k + 1 and n, respectively.
5. The minimum and maximum values of the span4 are 0 and n − 2(k + 1), respectively.

Proof. The upper bounds are trivial: all statistics except for the span take their maximal possible value n if there is just one
single weakly CC containing all nodes; this is possible as shown in Theorem 2.1. The span takes its minimum, zero, in this
case. Since the minimal possible number of nodes in a weakly connected component is k + 1 the minimal possible number
of nodes in a weakly connected component in Gu

k is k + 1. Thus, k + 1 is as well the minimal possible value for the median
if there are cases with more than half of the components having k + 1 nodes. This is satisfied if two components have k + 1
nodes and a third contains all remaining nodes. Note that for k + 1 > n

3 this is not possible since then only two strongly
components can exist as a weakly CC has at least k + 1 nodes. The mean number of nodes in a weakly CC is smallest if
the nodes are equally distributed between the highest possible number of weakly connected components as described in
Theorem 2.2 and therefore is n

n/(k+1)� . Like the median the maximal number of nodes in a component cannot be smaller
than k + 1 as well and if n is not divisible by k + 1, it is smallest if the remaining nodes are evenly distributed between all
components.

Eventually, the span of the number of nodes takes its maximal value if there are only two components, one containing
the minimal number of nodes possible and one with all other nodes. Since the smallest number of nodes in a component
is k + 1 the maximal span is n − 2(k + 1). �

4 Note that the span refers to the statistical property of the distribution of the number of nodes in the connected components.
5

JID:TCS AID:13585 /FLA [m3G; v1.327] P.6 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 3. MST node depth calculation on eil51.

1 2 3
⌈ n

2

⌉
3 2 1

Fig. 4. An n-vertex path of odd length. Each node is labeled with its depth.

Theorem 2.5. For the number of nodes in the strongly connected components of the k-NNG Gd
k of any Euclidean graph with d : V ×

V →R≥0 and n − 2 > k, the following holds:

1. The minimum and maximum values of the mean are n
n−k and n, respectively.

2. The minimum and maximum values of the median are 1 and n, respectively.
3. The minimum and maximum values of the maximum are k + 1 and n, respectively.
4. The minimum and maximum values of the minimum are 1 and n, respectively.
5. The minimum and maximum values of the span are 0 and n − 2, respectively.

Proof. Like in the case of weakly CCs (see Theorem 2.4) all statistics except for the span are maximal if there is only one
single component containing all nodes. This is possible due to Theorem 2.1. As a consequence, the span of the number of
nodes in the strongly CCs is minimal and zero in this case. As discussed in the proof of Theorem 2.3 the minimal possible
number of nodes in a strongly connected component is one. Hence, one is the minimal possible value for the median if
there are cases with more than half of the components having one node. This is satisfied if two components have one
node and a third contains n − 2 nodes. The minimal mean value is reached if nodes are distributed between the maximum
number of strongly connected components as described in Theorem 2.3. Therefore the maximum mean value is n

n−k . The
maximal number of nodes in a strongly CC is minimal in the same case.

As argued in Theorem 2.3 there is always at least one component with k + 1 nodes; this is a lower bound for the
maximal number of nodes in a single component.

The span is maximal if there are only two components, one containing the minimal number of nodes possible and one
with all other nodes. Since the smallest number of nodes in a component is one the maximal span is n − 2. �
2.3. Minimum spanning tree depth features

Another crucial group of TSP features relies on a minimum spanning tree of the input instance.5 Given an MST, this
feature group consists of minimum, maximum, mean, median and the span of the node depth in an MST of the source
graph. The algorithmic implementation of the node depth calculation is as follows: an initial depth value D = 1 is initialized.
Next, the algorithm removes leaf nodes recursively labeling them with D and increasing D after each iteration by one. The
process is repeated until all nodes are labeled. Fig. 3 visualizes the process on TSPLIB instance eil51.

Lemma 2.2. Among all trees with n nodes, the n-vertex path has the maximal sum of depths.

5 Note that minimum spanning trees are not necessarily unique.
6

JID:TCS AID:13585 /FLA [m3G; v1.327] P.7 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 5. The MST depicted by the dashed lines corresponding to the case of minimal mean depth.

Proof. Note that the depth calculation does an “onion-peeling” by iteratively removing leaf nodes. For a tree, in every
iteration at least two leaf nodes are removed. Now on a n-vertex path the algorithm performs exactly �n/2� iterations while
on any other graph the number of iterations is upper bounded by �n/2�. �
Theorem 2.6. For the n-vertex path we have:

1. The mean depth equals n
4 + 1

2 for even n and �n/2�2

n for odd n.

2. The median depth is n
4 + 1

2 if n mod 4 = 0 and � n
4 � otherwise.

3. The maximum depth is � n
2 � and the span � n

2 � − 1.

Proof. Ad (1): We distinguish n even and n odd. For even n we see that each depth between 1 and n/2 is counted twice
(see Fig. 4). Hence, the mean depth is given by

1

n

n/2∑
i=1

2i = 2

n

n/2∑
i=1

i = 2

n
· (n/2)(n/2 + 1)

2
= n

4
+ 1

2
,

where we used the formula for the arithmetic sum
∑n

k=1 k = n(n + 1)/2. For odd n we obtain

1

n

⎛
⎝
n/2�∑

i=1

2i +
⌊n

2
+ 1

⌋⎞
⎠ =
n/2�(
n/2� + 1) + (
n/2� + 1)

n

= (
n/2 + 1�)2

n
= �n/2�2

n
.

Ad (2): Let x(i) denote the i-th order statistic of the depth values. Note that all but one depth value occur twice for an
n-vertex path. Therefore, x(�n/2�) = �n/4�. Hence, the median value is �n/4� for both odd and even n. The case where n is a
multiple of 4 requires special attention. Here, the values x(�n/2�) and x(�n/2�+1) differ by one. Therefore,

x(�n/2�) + x(�n/2�+1)

2
= n/4 + n/4 + 1

2
= n

4
+ 1

2
.

Ad (3): The values for maximum depth and span are obvious. �
The structure of an MST with minimal depth is not trivial since a node within an MST of a Euclidean graph in the

two dimensional space cannot have a degree greater than six as shown in [31]. In the following, we will first describe the
construction of a graph with a variable number of nodes n that we will then show to have an MST of minimal possible
depth.

In this regard, consider a graph G = (V , E) that follows the fractal structure depicted in Fig. 5 and – “zoomed in” for
more details – in Fig. 6. All nodes are placed around an initial node I ∈ V with five nodes Pi, 1 ≤ i ≤ 5 being placed on the
vertices of a regular pentagon and for all v j d(I, Pi) = r1 < d(I, v j), v j ∈ V , v j �= Pi, 1 ≤ i ≤ 5. Around the nodes Pi four
nodes C3, i,k, 1 ≤ k ≤ 4 are placed. Note that the index of the nodes Cl i k consists of three parts that locate the node in the
fractal structure. The first part l states the level of the fractal structure the node belongs to, i identifies the node Pi that the
considered node is allocated to and k counts the nodes with same l and i. For the four nodes around every Pi it holds that
d(C3, i,k, C3, i, l) = d3 > d(Pi, C3, i, l) = r2, 1 ≤ k ≤ 4, l �= k, 1 ≤ l ≤ 4. This ensures that ∀l, ∀k, ∀ f , ∀t d(Cl, i,k, C f , i+1, t) < r1
where the radius r2 is set to be (d(Pi, Pi+1) − r1)/3. C3, i, 1 is placed to the left of Pi between the circle c1 with radius r1
7

JID:TCS AID:13585 /FLA [m3G; v1.327] P.8 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 6. The repetitive pattern if more nodes of further levels are added. Dashed lines are the MST-edges and circles represent the area within that no other
node can be placed without a change of the edge of the MST. The grey circle part is from the circle around the initial node I . C3,i,4 and C3,i,1 lie between
the border of this circle part and the tangent t at Pi . Around C3,i,1 nodes of the next level are depicted.

around I and the tangent t of c1 on Pi with a distance to t of one third of the distance between the intersections of t and
c1 with the circle c2 with radius r2 around Pi . The same applies for C3, i, 4 in a mirrored way. This construction pattern is
repeated for nodes of greater levels in the fractal structure. Those nodes Cl, i,k are added analogously but instead of I now
Cl−2, i, � k

16 � is considered and instead of Pi now Cl−1, i, � k
4 � is considered. The MST T = (V , ET) of this graph contains the

edges of G that connect the initial node with every Pi and those edges that connect every node with its four surrounding
nodes of the next level. This is because G is constructed in such a way that those edges are the shortest of the node of the
lower level to any other node.

Theorem 2.7. The mean depth of an MST with n > 7 nodes is minimal if its structure corresponds to the structure of graph T .

Proof. An MST with a smaller depth would either have more than five nodes around the initial node or on average more
than four nodes around every succeeding node. As stated before the maximal number of nodes that can be connected to
one single node within an MST of a Euclidean graph is six for the case of the two dimensional space [31]. If six nodes
are placed around I the eighth point C3,1,1 cannot lie between t and c1 since the P -nodes have the same distance to
I and to their neighboring P -nodes and following from that d(P5, I) > d(P5, C3,1,1) ∨ d(P2, I) > d(P2, C3,1,1) and hence,
(I, P5) /∈ ET ∨ (I, P2) /∈ ET . Therefore, only two nodes of the next level can be connected to every Pi in this case. Thus, the
MST of this case has a smaller depth for n = 7, an equal depth for (n < 7) ∨ (7 < n < 10) and a smaller depth for n > 9. If
an MST would have on average more than four connected succeeding nodes around every node other than the initial node
this means that some nodes would have five or six connected succeeding nodes. Six connected succeeding nodes are not
possible since then no preceding node could be connected to the considered node. If a node is connected to five succeeding
nodes the preceding node has to lie at the last free point for the case of six nodes around one node. Thus, the preceding
nodes of the considered node could only have two preceding nodes as in the case for the six nodes around I yielding an
average of less than four preceding nodes per node. �

With this, the minimal possible median depth of the MST is one since more than half of the nodes are leaves. The
maximal depth in this case can be calculated by calculating the greatest completed level L of this tree starting at one as
the depth. The level L is therefore the largest integer for which 1 + ∑L−2

i=0 5 · 4i ≤ n. The number
∑L−2

i=0 4i interpreted in
the quaternary number representation is a string with all ones. This means multiplying this number with three and adding
one yields a string in quaternary representation with a leading one and L − 2 zeros, i.e. 4L−1. Thus,

∑L−2
i=0 4i = (4L−1−1)

3
and with this 4L−1 ≤ 3

5 n + 2
5 and since L is the largest integer for which this inequality holds L can be computed by L =

(log4

(
3
5 n + 2

5

)
+ 1�. With this, the number of remaining nodes R that are not sufficient to complete the current level can

be calculated by n − (5
3 · 4L−1 − 2

3). If R > 4L−1 more than one branch accruing from the five P nodes has remaining nodes
as its leafs. This means the depth of the root node and therefore the maximal depth is L + 1 and, otherwise L. In both cases,
the span is the max depth minus one. Second, the sum of all depths without R is computed by L + ∑L−1

i=1 5 · 4i−1 · (L − i).
Then, the growth of the sum of all depths by adding R nodes can be calculated with a recursive function f (r, l) with r being
the number of nodes at level l that have a greater depth because of the remaining nodes R . If l = 1 the function evaluates
to r + 1r>1 where 1r>1 is the indicator function which evaluates to 1 if the predicate r > 1 is true and to 0 otherwise, and
else r + f (� r

4 �, l − 1). Finally, the mean of all depths can be calculated by

1

n

(
L +

L−1∑
5 · 4i−1 · (L − i) + f (R, L)

)
.

i=1

8

JID:TCS AID:13585 /FLA [m3G; v1.327] P.9 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 7. Circles drawn around a sample instance with maximal possible minimal NN distance between all cities.

2.4. Calculation of dmax

A big part of the salesperson features is built upon the distance between two nodes. The feature groups concerned with
those distances are the distance, the nearest neighbor distance and the MST-distances feature group. The last feature group
is part of the MST-based feature group and the nearest neighbor distance features are closely related to the k-NNG features
as they are statistics of the distances between nearest neighbors. Thus, both feature sets are promising features to extend
the previously considered feature groups. Especially for those features the minimal distance between two nodes, i.e., the
minimal nearest neighbor distance occurring in the instance, is of interest. While the lower bound of the minimal distance
between two nodes is trivially 0 the upper bound needs to be derived with more thought. We will call this upper bounding
distance dmax in the following and since it is the basis for different feature groups, we will cover the calculation of dmax in
this section before we cover the different feature groups.

Consider the case that every distance from one city to its nearest neighbor is maximal and the same for every city. In
this case a circle can be drawn around every city with a radius of rmax = dmax

2 such that none of those circles overlap. Only if
this is the case no distance between two cities is smaller than dmax . Furthermore, the circles must be packed in the highest
possible density so that rmax is the maximal possible radius around every city. This is known as the circle packing problem.
For equal circles, Thue [35] proved that the most efficient packing is hexagonal packing, and thus, that the ratio of the area
covered by the circles to the overall area is upper bounded by

(
π

2
√

3

)
[35]. Hexagonal packing in this context means that

every circle has six circles placed directly around itself except for those at the border of the bounding box. An example of
this can be seen in Fig. 7.

With the formula for the area covered by the circles, the number of cities n and the formula for one circle area πr2, the
following equation can be derived for n → ∞:

nπr2
max =

(
π

2
√

3

)
· A. (1)

Here, A denotes the area of the smallest box containing all cities (bounding box). However, this only holds true for
n → ∞. If for instance n ≤ 20 circles should be fitted in a square the optimal solutions do not cover a π

2
√

3
fraction of the

space and look structurally very different depending on n [26]. Thus, an exact calculation of dmax for every possible n and
bounding box is not feasible. However, for large n the fraction of the space covered by the circles will approximate π

2
√

3
and

we can therefore derive an upper bound that is not tight but close to the exact upper bound for large n.

Theorem 2.8. For a TSP instance with n ≥ 2 cities in a bounding box with side lengths a and b the following inequality holds:

dmax ≤
a+b

2 +
√(

a+b
2

)2 + 4(n − 1)
(

ab
2
√

3

)
n − 1

.

Proof. Consider the case of regular circle packing: If for some n and a specific bounding box a packing is optimal that does
not yield the highest possible density, Equation (1) would overestimate rmax . This is true since with the equation it would
be assumed that more space of the bounding box is covered by the circles than they do. In the considered variation of circle
packing, the circles can be partially outside of the considered bounding box if the centers of the circles, the cities, are still
on the border of the bounding box. If many circles are partially outside of the bounding box, the maximal minimal distance
between two cities can be greater since the circles at the border occupy less area of the bounding box. Thus, the minimal
distance is maximal if the most possible cities are at the border of the bounding box and the remaining cities are packed in
9

JID:TCS AID:13585 /FLA [m3G; v1.327] P.10 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
the densest possible manner. The most cities are at the border of the bounding box if one is at every corner of the bounding
box and if cities are placed with a distance of dmax to each other on the edges. Hence, at most there are 4 cities with three
quarters and 2(a

2rmax
− 1 + b

2rmax
− 1) cities with halves of their surrounding circles outside of the bounding box. The last

calculation may not necessarily yield an integer value, but the calculated value will nevertheless be an upper bound for the
cities on the edges. Further, the highest possible density of the internal packing is bounded from above by π

2
√

3
. Therefore,

by subtracting the sum of full circle areas that can maximally be outside of the bounding box from n in Equation (1) the
following inequality can be derived:

πr2
max

(
n −

(
a

2rmax
+ b

2rmax
+ 1

))
≤ π

2
√

3
ab.

Finally, by substituting rmax = dmax
2 and solving the inequality for dmax we get the inequality of the theorem. �

2.5. Nearest neighbor distance features

The nearest neighbor distance features are statistics on the distances from a node to its nearest neighbor. For the lower
bounds it should be noted that not all distances can be 0, i.e., all nodes cannot lie at the same location, since the normal-
ization is derived with respect to the bounding box of the instance which depends on the location of the nodes. Thus, if the
edge lengths a and b of the bounding box are not 0 there has to be at least one nearest neighbor connection, whose edge
length is not 0 as well.

Theorem 2.9. For the nearest neighbor distances of an instance with n nodes, edge length a and b of the corresponding bounding box
and a function dm(n, a, b) that returns the upper bound for the maximal minimal distance dmax between nodes, the following holds:

1. The minimum value of the mean is 0 and the maximum value is smaller than dm(n, a, b).
2. The minimum value of the median is 0 and the maximum value is smaller than dm(� n

2 � + 2, a, b).

3. The minimum and maximum values of the maximum are 0 and
√

a2 + b2 , respectively.
4. The minimum and maximum values of the minimum are 0 and dmax, respectively.
5. The minimum and maximum values of the span are 0 and

√
a2 + b2 , respectively.

Proof. The mean nearest neighbor distance is minimal if all nodes lie at the same location. The nearest neighbor distance
of all nodes is 0 in this case. Thus, the mean nearest distance is 0, too. Further, the mean is maximal if the sum of all
nearest neighbor distances is maximal. This is equivalent to circle packing as described above with unequal sized circles and
the goal to maximize the sum of the sums of the radii of the circles and their smallest neighboring circle. In the optimal
structure, if a circle is not at the border of the bounding box it must touch at least three other circles since otherwise it
could have a larger radius without the need to diminish the radius of another circle. Thus, on the one hand increasing a
circle in such an arrangement that is bigger or equal to its neighboring circles will decrease the overall sum since the area
the circle takes up grows quadratically with the radius which needs to be compensated by the remaining circles. A decrease
of a circle that is bigger than its neighboring circles on the other hand will allow the neighboring circles to increase with a
surplus in the growth of the overall sum. Hence, in the optimal case all circles have equal sizes and the optimal structure
is hexagonal packing as in Section 2.4. The median nearest neighbor distance has a trivial lower bound. If more than half
of the nodes lie at the same location the median is 0. The upper bound for the median is not the same as the one for the
mean since almost the half of the nearest neighbor distances can be 0. Therefore, the half minus one nodes can lie at the
same location and be treated as one node. Thus, the problem is finding dmax for � n

2 � + 2 nodes.
The upper bound for the maximal nearest neighbor distance is the longest possible distance that can occur in an instance,

namely
√

a2 + b2. This value is realized if all but one nodes lie at the same position and the last node spans the bounding
box. The lower bound is achieved if all nearest neighbor distances are 0 as in the case of the minimal mean. The bounds
for the minimal nearest neighbor distance are trivial.

The lower bound for the span is 0 which is the case when all nearest neighbor distances are the same as for the
maximal mean. The upper bound equals the upper bound of the maximal nearest neighbor distance and is achieved in the
same scenario. �
2.6. Minimum spanning tree distance features

The MST distance features are statistics on the edge lengths of the MST. Since the edge lengths of the minimal spanning
tree depend on the shortest possible way to connect the cities to each other the upper bounds of the statistics depend on
dmax .

Theorem 2.10. For the edge lengths of an MST of an instance with n nodes, edge length a and b of the corresponding bounding box and
a function dm(n, a, b) that returns the upper bound for the maximal minimal distance dmax between nodes, the following holds:
10

JID:TCS AID:13585 /FLA [m3G; v1.327] P.11 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
1. The minimum value of the mean is
√

a2+b2

n−1 and the maximum value is smaller than dm(n, a, b).
2. The minimum value of the median is 0 and the maximum value is smaller than dm(� n

2 � + 2, a, b).

3. The minimum and maximum values of the maximum are
√

a2+b2

n−1 and
√

a2 + b2 , respectively.
4. The minimum and maximum values of the minimum are 0 and dmax, respectively.
5. The minimum and maximum values of the span are 0 and

√
a2 + b2 , respectively.

Proof. The minimal possible mean of the distances within an MST is obtained if the nodes are equally distributed across
the shortest path that can define the bounding box. The nodes that define the path can lie on the corners of the bounding
box in which case there only need to be two such nodes or at the edges of the bounding box requiring four such nodes. For
the case of four nodes all nodes can be placed freely on their edge. On the edges with length b the fractions q, p ∈ [0, 1]
and on the edges with length a the fractions u, v ∈ [0, 1] determine the location of the nodes. Assuming that q and u have
a greater or equal value to their counterpart the shortest path length l can be calculated as: l = √

((1 − q)b)2 + (va)2 +√
((1 − v)a)2 + ((1 − p)b)2 + √

((1 − u)a)2 + (pb)2. In order to minimize l the values u and q should be set to 1 which
yields l = va +√

((1 − v)a)2 + ((1 − p)b)2 + pb. Finally, since squaring adding and then taking the square root of two values
will be smaller than just adding them p and v should be set to 0. I.e., all four nodes are located on the two edges of the
bounding box if l is to be minimized. Thus, the case with only two nodes defining the bounding box yields the shortest
path. Therefore, the lower bound for the minimal mean of the distances within the MST is

√
a2+b2

n−1 .
The upper bound is the same as for the mean of the nearest neighbor distance but not the argumentation. According to

Prim’s algorithm the MST contains all nearest neighbor connections. Thus, an MST can also be constructed by first, finding
the undirected k-NNG with k = 1, second, creating a distance matrix for the distances between the components, where a
distance between two components equals the smallest distance between any two nodes of the components and then repeat-
ing the process until there is only one component remaining. From Theorem 2.9 follows that the average nearest neighbor
distances of the nodes cannot be greater than dm(n, a, b). However, the nearest neighbor distances of the components corre-
spond to second or higher nearest neighbor distances and could therefore increase the mean distance. To construct an MST
with maximal distance the nodes in the components should be arranged equidistant as described in Theorem 2.9 for the
maximal mean nearest neighbor distance. Consider in the following the case of two nodes per component, the argumen-
tation, however, works with any number of nodes. Further components of components would also lead to the same result.
If the two nodes of a component would lie at the exact same location the components can be viewed as individual nodes
and therefore the sum of the nearest neighbor distances is again maximized with hexagonal packing. For n → ∞ the dmax

of this case is
√

2 times larger than the dmax of the base instance. However, since the distances of the two nodes within
the components are 0, the mean of edge lengths within the TSP will still be smaller than dmax . If the distance between the
nodes of the components is increased the shape that needs to be packed is that of two overlayed circles where one of them
is shifted by the increase of the distance. This new shape needs more space and since the new shape gains the area of a
sickle the additional space needed will be greater with the first increases of the distance between the two nodes than with
last increases. Hence, since more and more increases lead finally to hexagonal packing with no components this means if
there is a higher upper bound it must be a small variation of hexagonal packing. However, increasing the distance of one
node to its neighboring nodes in hexagonal packing will cause at least one of the distances to the nearest neighbor of one
of those neighboring nodes to decrease by the same amount. Thus, the maximal mean distance within an MST is dmax . The
argumentation for the remaining statistics is the same as for Theorem 2.9. �

After deriving the theory of normalizing TSP features, we proceed with an empirical analysis and testing of our outcome
in the following sections. With this we demonstrate the advantages of normalized TSP features.

3. Instances and algorithms

In this section, a brief overview of the used TSP instances, considered TSP solvers and validation of the solvers’ runtimes
is given. The full set of considered instances is the union of three sets from the literature enhanced by new, generated
instances.

The first set was already used in Kerschke at al. [17] and is referred to as ECJ2018 in the following. It consists of a collec-
tion of instances from different sources, including artificially generated instances such as random uniform Euclidean (RUE)
instances, strongly clustered instances (Netgen), and hybrids “in-between” resulting from “morphing” each one RUE and
Netgen instance (Morphed); for details on the morphing process we refer the interested reader to [22]. In addition, the set
contains real-world instances from the well-known TSPLIB [29] benchmark (TSPLIB), instances from the very large scale in-
tegration (VLSI) application area and instances considering subsets of real-world cities (National). Fig. 8 gives an exemplary
impression of the structural differences between the instance types. In total, there are 1 844 TSP instances in this set. Next,
we also used the instance set that was proposed in [5] consisting of 450 instances in total. The number of cities for each
instance is n ∈ {500, 1 000, 2 000}. These instances were generated in an evolutionary process using sophisticated mutation
operators with the goal to evolve instances which show severe performance differences between state-of-the-art solvers
EAX and LKH (see below). We refer to this set as FOGA2019. The third set of instances is taken from [33]. It consists of
11

JID:TCS AID:13585 /FLA [m3G; v1.327] P.12 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 8. Exemplary instances from the considered instance set. From left to right row by row: RUE, Netgen (two dense clusters), Morphed (combination of
the two preceding instances), TSPLIB, VLSI, National, and evolved (with simple mutation) as well as evolved (with sophisticated mutation).

Table 1
Overview of all instance subsets including the PAR10 and PQR10 scores for the three considered solvers EAX, LKH and Concorde (best performing solvers
are highlighted in bold while second bests are underlined).

Set Num. of Cities Num. of
Instances

PAR10 PQR10

Min. Median Mean Max. EAX LKH Concorde EAX LKH Concorde

ECJ2018 [17]
RUE 500 1 250 1 250 2 000 600 16.53 163.13 1 319.92 12.82 150.08 1 284.95
VLSI 662 1 412 1 311 1 973 18 5.46 59.85 6 544.21 4.68 41.91 6 230.43
TSPLIB 574 1 291 1 195 1 889 21 1 726.82 1 794.12 11 554.98 1 722.84 1 764.66 11 849.54
National 634 866 1 028 1 979 5 4.59 19.63 513.60 3.55 12.41 471.38
Netgen 500 1 250 1 250 2 000 600 10.16 669.33 253.84 8.49 574.24 248.21
Morphed 500 1 250 1 250 2 000 600 13.88 678.12 481.73 10.70 583.05 466.47

FOGA2019 [5]
All 500 1 000 1 167 2 000 450 10.89 421.90 798.92 8.61 410.19 779.91

Evolved-Simple Instances
500-EAX 500 500 500 500 1 000 1.25 5 524.22 43.37 1.12 5 127.05 42.22
500-LKH 500 500 500 500 1 000 110.23 0.89 62.39 80.71 0.73 60.97
1 000-EAX 1 000 1 000 1 000 1 000 500 4.79 3 940.62 364.46 3.98 3 306.38 357.22
1 000-LKH 1 000 1 000 1 000 1 000 500 146.28 44.29 385.05 101.38 44.04 376.17
1 500-EAX 1 500 1 500 1 500 1 500 500 12.65 2 818.57 706.16 10.14 2 504.68 686.15
1 500-LKH 1 500 1 500 1 500 1 500 500 208.57 14.70 667.13 131.27 10.79 651.24
2 000-EAX 2 000 2 000 2 000 2 000 500 25.35 2 877.67 1 399.64 19.62 2 458.15 1 367.76
2 000-LKH 2 000 2 000 2 000 2 000 500 258.61 42.05 1 263.46 155.46 25.44 1 233.53

Evolved-Sophisticated Instances
500-EAX 500 500 500 500 1 000 1.01 7 987.63 23.15 0.95 7 952.74 22.42
500-LKH 500 500 500 500 1 000 62.17 1.32 49.80 46.53 1.08 48.67
1 000-EAX [33] 1 000 1 000 1 000 1 000 500 3.92 7 128.84 207.23 3.40 6 994.79 202.97
1 000-LKH [33] 1 000 1 000 1 000 1 000 500 138.25 7.73 281.47 88.75 5.49 273.51
1 500-EAX 1 500 1 500 1 500 1 500 500 9.49 6 192.82 534.80 7.79 5 422.83 516.74
1 500-LKH 1 500 1 500 1 500 1 500 500 286.27 16.54 615.87 165.50 12.91 597.14
2 000-EAX 2 000 2 000 2 000 2 000 500 19.17 4 480.48 1 196.17 15.25 4 064.28 1 161.64
2 000-LKH 2 000 2 000 2 000 2 000 500 225.05 38.14 1 119.17 135.98 22.73 1 091.05

1 000 instances with a size of n = 1 000 cities evolved by the method proposed in [5]. 500 of these instances are easy to
solve for EAX and the other 500 are easy to solve for LKH. In addition, we generated another large set of evolved instances
with n ∈ {500, 1 500, 2 000}. In combination with the instances from [33], this set is referred to as evolved instances. We
extended the set of [33] with additional evolved instances to increase the diversity of the artificially generated instance set.
Hence, we considered not only different numbers of cities but also the simple mutation operators [5] which have noticeable
different characteristics in comparison to the sophisticated mutation operators. For an overview of all considered instance
sets see Table 1 and Fig. 8 for some visualizations of exemplary considered instances.
12

JID:TCS AID:13585 /FLA [m3G; v1.327] P.13 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
We are interested in improving the state of the art in TSP-solving by means of per-instance algorithm selection. Therefore,
our algorithm portfolio consists of the following three algorithms: edge assembly crossover (EAX) [23], Lin-Kernighan-Helsgaun
heuristic (LKH) [12,20], and the exact solver Concorde [1]. EAX is a genetic algorithm with a smart crossover operator
(termed EAX as well) and entropy-based diversity preservation to prevent premature convergence of the population. LKH is
Keld Helsgaun’s implementation of a highly effective local-search algorithm based on k-OPT edge exchanges. Both solvers, in
their respective restart versions [10], pose the state-of-the-art in inexact TSP-solving [17,19].6 Concorde on the other hand is
an exact solver based on a highly developed ILP-based branch-and-cut procedure involving cutting-plane methods; Concorde
is frequently capable of solving instances with thousands of nodes to optimality in reasonable time which is astonishing
given the problems’ NP-hardness.

We solve all TSP instances and benchmark their performance against each other. Each solver was executed ten times
on each instance and its runtime was recorded. We then calculated the penalized average runtime (PAR10; [2]) and the less
outlier-sensitive penalized quantile runtime (PQR10; [15]) scores for each solver and instance. Both measures aggregate the
runtime over the ten runs. When a solver was not able to find the optimum within the give time-budget, the solver receives
ten times the cutoff-time as penalty. In contrast to PAR10, which computes the arithmetic mean of the penalized runtimes,
PQR10 is based on the p-quantile, with p = 0.5 (i.e., the median) in our case. We used a cutoff-time of 3 600 seconds for
EAX and LKH while Concorde had an unlimited runtime. The reason is that EAX and LKH are heuristic solvers. Both do not
guarantee to find the optimal solution to a given TSP instance. Instead, they may get stuck in a local optimum and even
an unlimited time-budget will not prevent that. In contrast to EAX and LKH, Concorde is an exact solver — it will find the
optimum within an unlimited period of time. The PAR10 and PQR10 scores for the different solvers and instance sets can
be found in Table 1. It becomes evident, that for all instance sets, EAX and LKH can be considered to be competitive to
each other. In fact, 51.6% of all instances are EAX-easy instances — meaning, that EAX is the quickest solver to find the
optimum. In addition, 48.3% of all instances are LKH-easy while only 0.04% of all instances are Concorde-easy. We found
that Concorde is not sufficiently competitive to EAX and LKH and is, therefore, not considered in our case study.

4. Exploratory data analysis

Next, we conduct an exploratory data analysis (EDA) on the instance groups introduced in Section 3 to assess the normal-
ization effects of the MST, k-NNG, and nearest neighbor features visually. First, we evaluate how the normalization affects
the TSP features themselves. Then, we deepen the analysis by assessing how the normalization affects the correlation of the
features (a) to other features and (b) to the performances of EAX and LKH.

4.1. Normalized vs. unnormalized features

We first compare scatterplots of normalized and unnormalized features, respectively. Some exemplary yet representative
results on the FOGA2019 instance set can be found in Fig. 9. Since we already presented the effect of the normalization on
some features in our previous study, we will consider the newly added features in this plot. Hence, the maximal distance of
a node to its nearest neighbor is shown on the x-axis. On the y-axis, the mean edge length of an MST is plotted. The plot
on the left shows the unnormalized features, the one on the right the respective normalized counterparts.

Considering the node coloring in the unnormalized plot, the different instance sizes ranging from 500 to 2 000 nodes
are distinguishable. We observe that the mean distance in an MST increases strongly with the instance size, while the
maximal distance of a node to its nearest neighbor only scales slightly with the instance’s size. Thus, the clusters in the plot
representing the instance size are clearly distinguishable. In contrast, in the normalized plot, the instance sizes are not the
discriminating factor. The distinctively colored clusters representing different instance sizes overlap clearly, especially when
examining the y-axis. Considering the other instance groups – ECJ2018 and evolved instances – the respective scatterplots
show the same pattern. These results support the expected effects of the normalization. Concededly, when considering the
elementary normalization by Pihera & Musliu [27], the results are visually similar. Nevertheless, the normalization conducted
here is much more precise and mathematically well-founded. It, therefore, bears more valuable theoretical insights into the
effects of TSP feature normalization.

Admittedly, a few other plots of normalized features still exist in which the instance size can still be distinguished. Here,
the instances with a higher number of nodes have lower values than instances with fewer nodes. Nevertheless, as stated in
the introduction of Section 2 this phenomenon has a reasonable mathematical explanation: our normalization considers the
lower and upper bounds of the feature values, fmin and fmax. For some features, e.g., the maximal depth within an MST,
the upper bound grows linearly while the lower bound grows logarithmically with n. Thus, if the feature value on average
grows logarithmically with n, the normalized value approaches zero for increasing n.

Furthermore, we explored the effect of the normalization when considering multiple features. To this end, we adopt
autoencoders, a modern dimensionality reduction method. Autoencoders are feed-forward deep neural networks that learn
data representations unsupervised. Autoencoders are composed of encoder and decoder networks and a latent space in-
between. The encoder uses the usually high-dimensional input data and transforms it into a low-dimensional representation

6 The restart-version triggers a restart once the algorithm runs into its internal stopping conditions and the given time budget is not yet depleted.
13

JID:TCS AID:13585 /FLA [m3G; v1.327] P.14 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 9. Scatterplots of two 3-NNG graph features displaying the effect of the TSP feature normalization based on the FOGA2019 instance set. On the left-
hand side, the unnormalized features can be seen, and on the right-hand side their normalized counterparts. The normalization worked as expected since
the instance sizes cannot be distinguished clearly anymore. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)

Table 2
The aggregated trustworthiness and continuity scores for the z-closest neighbors of the 30 independently trained autoencoders. Performing a one-sided
Wilcoxon test yields that the autoencoder on normalized features have a significantly higher continuity and trustworthiness (p-value � 0.05).

Unnormalized Normalized

trustworthiness continuity trustworthiness continuity

z median iqr median iqr median iqr median iqr

1 0.815 0.008 0.936 0.012 0.956 0.012 0.992 0.004
5 0.814 0.008 0.917 0.011 0.955 0.012 0.989 0.005
12 0.813 0.009 0.900 0.009 0.954 0.013 0.987 0.007

in the latent space. The decoder then uses these low-dimensional encodings to retrieve the original high-dimensional data.
Overall, the goal is to minimize the autoencoder’s reconstruction error to recover an exact low-dimensional representation
of the data. The effectiveness of autoencoders was first shown in [13]. We also considered other prominent dimensionality
reduction methods like principal component analysis (PCA), multidimensional scaling (MDS), and t-distributed stochastic
neighbor embedding (t-SNE). However, we decided against these classical approaches since they have problems capturing
local relationships as was shown in [32] and/or perform worse than autoencoder (see, e.g., [13]).

The autoencoders were initialized with random weights. The resulting mappings vary between autoencoders, even
though they were trained using the same data set. Hence, we trained 30 networks for the normalized data and 30 for
the unnormalized data and found very similar performance and revealed the same pattern. The performance was assessed
using trustworthiness and continuity as proposed in [36]. Trustworthiness measures to what extent the z-closest neighbors
in the embedded space are also close in the original space, and continuity to what extent the z-closest neighbors in the
original space are also close in the embedded space. Hence, trustworthiness penalizes close neighbors in the embedded
space that are not close in the original space, and continuity penalizes neighbors in the original space that are not close
in the embedded data. Both values range from 0 to 1, with values closer to 1 being better than values closer to 0. The
results of our experiments can be seen in Table 2 for both the unnormalized (left part of the table) and the normalized
features (right part). Although it is clearly visible that autoencoders encode the normalized features better, we performed a
one-sided Wilcoxon test.

The test yields that both trustworthiness and continuity scores are significantly higher for the autoencoders based on
the normalized features (compared to those based on the unnormalized features). It is thus evident that the normalization
could substantially improve the continuity and trustworthiness of the autoencoders. This implies that autoencoders based
on the normalized features can preserve the original local structure more than those based on the unnormalized features.
Fig. 10 shows the result of a representative autoencoder mapping. It reduced the set of 49 nearest neighbor, NNG-, and
14

JID:TCS AID:13585 /FLA [m3G; v1.327] P.15 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 10. Result of the reduction of 40 nearest neighbor, MST- and NNG-features to the two-dimensional space by using autoencoders. The plots show the
two-dimensional representations for the unnormalized features (left) and the normalized features (right).

MST-features to the two-dimensional space represented by X1 and X2. Note that the underlying autoencoders have been
trained on all instance sets listed in Table 2. However, we only visualized mappings for an exemplary subset of the instances
for better readability, namely ECJ2018.

In the unnormalized plot, the different instance sizes can be discriminated clearly, indicated by the coloring of the
instances. In the normalized plot, the instances of different sizes are not separable anymore. This is in line with our obser-
vations on feature pairs (see Fig. 9) and indicates that the normalization has the desired effect.

Next, we analyzed the correlation of the features to each other. Heatmaps of the correlation coefficient for the normalized
and unnormalized features on the FOGA2019 set can be seen in Fig. 11. High positive correlations are colored in red,
whereas blue color tones indicate a negative correlation.

As shown in the upper plot, the correlation is diverse among the set of features. Noticeably, there are light areas in
the unnormalized feature correlation plot, which indicate a correlation close to zero. Nevertheless, there exist groups of
highly positively correlated features. In particular, a red block in the middle of the plot, consisting of NNG-features related
to the minimal, maximal, and span features of the strongly and weakly CCs, stands out. These features are also positively
correlated with the features related to the depth of the respective MST.

In contrast to that, when considering the normalized heatmap in Fig. 11, the overall impression of the correlation
changed notably. Here, the groups of highly correlated features are significantly smaller. The large block of highly corre-
lated features is not visible anymore. The normalization revealed that the correlation between these features is not as high
as it seemed. Additionally, when considering the relation of these features to the MST features, the correlation flipped in the
negative space. A similar phenomenon can be observed when considering the features calculated on the evolved instance
set. Also, for the ECJ2018 instances, the correlation decreased or shifted notably in the negatively correlated space, although
a large group of positively correlated features remains. When considering these findings, eventually, researchers might have
overestimated the intensity of the feature’s interrelation in the past. This insight is interesting concerning the algorithm
selection study, which we will conduct in Section 5.

4.2. The impact of feature normalization on the solver performance

Finally, the relationship of the solvers to the features is investigated by calculating the correlation of all normalized
and unnormalized features to the performance of EAX and LKH. Notice that in Fig. 12, the points depict unnormalized or
normalized features and not the different instances anymore. The plot reflects the correlation of the features with the PAR10
value of LKH on the abscissa (x-axis) and the PAR10 value of EAX on the ordinate (y-axis). This plot was created based on
the evolved instances. Notice that in the normalized feature’s plot, we plotted arrows indicating the shift from the former
position in the unnormalized plot for a more straightforward interpretation.

Ultimately, the overall goal of the feature normalization is to gain insights for an algorithm selection study as we will
conduct in Section 5. Having this in mind, the points in Fig. 12 representing the features should ideally reside in the second
(top left) or fourth quadrant (bottom right) of the plot. Here, the correlation of the features to the performance of one
15

JID:TCS AID:13585 /FLA [m3G; v1.327] P.16 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 11. Feature correlation heatmaps (top: unnormalized, bottom: normalized).

algorithm is positive and negative to the other algorithm. These features may facilitate the algorithm selection process. To
better visually separate the favorable from the unfavorable quadrants in Fig. 12, we colored the favorable ones in blue and
the less favorable ones in red.

In the left part of Fig. 12 – where the correlation of the unnormalized features to the solver’s performance can be seen
– only 25% of the features are located in one of the favored quadrants. Nearly half of the features reside in the upper right
quadrant, indicating a positive correlation of the features to the performance of both algorithms. Interestingly, the features
with the lowest correlation with EAX and LKH are those recently incorporated in this study.

In contrast, when considering the normalized features, ambivalent changes for different feature groups can be seen: for
some features, the solver performance’s correlation with the features decreased, for other features, the normalization has
16

JID:TCS AID:13585 /FLA [m3G; v1.327] P.17 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 12. Correlation of LKH and EAX performances with the features. The two plots show the correlations of the algorithms’ performances with the unnor-
malized features (left) and normalized features (right), respectively. Additionally, in the normalized feature plot, the arrows indicate the shift of the features
that is caused by their normalization.

no effect, while it increased for the newly added features. The same result can be observed when considering the ECJ2018
or FOGA2019 instance sets, respectively.

For the features that previously resided in the upper right quadrant, the correlation of the features to the algorithm
performance shifted in the uncorrelated or negatively correlated space. This result is in line with the observation that the
overall correlation of the features depicted in Fig. 11 declined. The features related to the span, the mean, and the maximal
value of the depth of the MST moved furthest, from the positively correlated space in the left part of Fig. 12 to the negatively
correlated space in the right part of Fig. 12.

When considering the arrows’ flows belonging to this feature group, we observe that for some features, the correla-
tion to the performance of LKH decreased more, and for other features, the correlation to the performance of EAX. Thus,
the normalization generates an overall arched movement of the arrows. However, this phenomenon is only observable for
the evolved instances and neither for the ECJ2018 nor FOGA2019 instance sets. For the last two instance sets, the arrows
are arranged straight and indicate no difference in the decrease of the correlation for one of the algorithms. The evolved
instances created by [5] and [33] were generated to be solved more easily by either EAX or LKH. The normalization re-
veals that this goal was achieved since most of the features calculated based on these instances correlate more with one
algorithm.

Unaffected by the normalization is the correlation of ten features, which can be seen in the middle of both plots. Three
of them are the minimal number of nodes in a strongly CC in a 5-NNG, the span of the number of weakly connected
components in a 5-NNG, and the span of the number of weakly components in a 7-NNG. That is the case since many
unstructured instances consist of a single weak component per definition. Similarly, the minimal number of nodes in a
strongly CC in a 5-NNG equals one. Therefore, the correlation did not change with the normalization for these three features.
The feature values are constantly zero or one, respectively. Additionally, the maximal number and the span of the number
of nearest neighbors nodes and maximal distances in an MST, belong to this set. This is the case for those features as their
theoretical upper and lower bound do not depend on n but only on the instance size.

For most of the newly added features, i.e., the nearest neighbor and the MST distance features, the correlation instead
increased, especially when considering the correlation with EAX on the y-axis. The mean and median distances in an MST
and the mean and median number of nearest neighbors, moved furthest from the lower left to the upper left quadrant.
Fortunately, they moved from the red to the blue quadrant so that now, most of the features are located in the two blue
quadrants. This result is a desirable effect of the normalization since it indicates that some features are more suitable for
distinguishing algorithm performance than initially thought. These effects are also observable for ECJ2018 or FOGA2019
instances. Notice also that a good portion of features – independent of their normalization status – are slightly more
correlated with the performance of EAX than with the performance of LKH. This might also explain why AS models – e.g.,
the ones in Section 5 – tend to select EAX more often than LKH.

After conducting the EDA, we can draw a few conclusions: first, the normalization effects are visible. As can be seen in
Fig. 9 and 10, the instance sizes are no longer the primary discriminating factor. Second, the correlation of the normalized
features to other normalized features decreased notably in contrast to their unnormalized counterparts. Third, the corre-
lation of the features to the performance of EAX and LKH changed notably. For some features, the correlation decreased
notably, while for others, it increased. Generally, it is revealed that most features are positively correlated with the perfor-
mance of one algorithm and negatively with the performance of the other algorithm. These features might be more auxiliary
for an ML algorithm to predict the performance of both algorithms as estimated.
17

JID:TCS AID:13585 /FLA [m3G; v1.327] P.18 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
All instance sets, algorithm performances, and plots are available online in a dashboard for further review.7 In the
following, we will test the suitability and effects of the normalized features for constructing automated algorithm selection
models.

5. Case study: algorithm selection

The exploratory data analysis (see Section 4) revealed some changes in terms of feature visualization, which were caused
by our proposed normalization. In the following, we will thus explore the potential of the normalized features for automated
algorithm selection. Note, however, that the objective of this work is not a comprehensive benchmark study. Instead, the
goal of this section is a proof-of-concept study that may provide a first indication about the suitability of the proposed
normalization.8

Within our study, we utilized the following (normalized) features:

• summary statistics (mean, median, maximum and span) of an instance’s MST depth (see Section 2.3),
• summary statistics (minimum, mean, median, maximum and span) of the distances in an instance’s MST (see Sec-

tion 2.6),
• the number of weakly/strongly connected components in the k-NNG of a TSP instance (see Section 2.2),
• summary statistics (minimum, mean, median, maximum and span) of the number of cities across the weakly/strongly

connected components of an instance’s k-NNG (see Section 2.2), as well as
• summary statistics (minimum, mean, median, maximum and span) of the distances between nearest neighbors in an

instance (see Section 2.5).

The NNG-features were based on k-NNGs with k = {3, 5, 7} following the parameterization proposed in [27].9 Hence, our
data contained a total of 50 features. The summary statistics in the set of unnormalized features are further enhanced with
higher moment summary statistics – i.e., the standard variation, the coefficient of variation and the skewness – as they
are part of the original feature sets. We then had to discard the normalized (unnormalized) minimum number of cities
in the strongly connected component of a 3-NNG (feature nng_3_strong_components_min) from our data, as it was
constantly zero (one) across all considered instances and thus did not provide any information for our candidate selectors.
Instead, we occasionally also considered the instance size as a feature as it might nonetheless be useful for discriminating
the different TSP instances.

In line with previous AS studies in the context of (inexact) TSP solving, our experiments are based on the 1 844 ECJ
2018 instances [17] (see Table 1 for details). We further focused on the two state-of-the-art heuristic TSP solvers EAX [24]
and LKH [12] – more precisely, on their respective restart-variants [10]. As candidates for the AS models, we investigated
random forests, support vector machines and gradient boosting, all of which are known to be very powerful machine
learning algorithms. To avoid undesirable side effects such as redundancy and partially high correlations among features
(see Section 4) and/or noise within features, we also performed automated feature selection. For simplicity, and in line with
previous AS studies, we considered a greedy forward-backward selection strategy, which usually tends to find small but
informative feature subsets in a very efficient manner. Note that we also considered the overhead of feature calculation. Yet,
the costs for the considered (normalized) feature sets, i.e., the runtime for computing them, are negligible.

In terms of the selectors’ performance assessment, we used the PAR10 score [2]. Moreover, further extending the pre-
viously published conference version of this work, we repeated our experiments using the PQR10 score [6] – a robust
alternative to the widely used PAR10 score. For a simpler comparison of the performance values, it is recommended to
compare the performance of the AS model with (a) the performance of the best standalone optimization algorithm – also
known as single-best solver or SBS (here: EAX) – and (b) the best possible performance, which corresponds to an oracle-
like (feature free) prediction of the best optimization algorithm per instance (also known as virtual-best solver or VBS). To
facilitate this comparison, we subsequently converted the selector’s PAR10 (PQR10) score into a closed-gap-percentage, in-
dicating the proportion of the gap between the SBS and VBS performances, which is closed by the AS model. Note that this
is a common metric in various AS studies [2,16,21].

In order to also take the stochasticity of the AS models into account, we repeated all our experiments 25 times. The
resulting closed-gap-values are illustrated in Fig. 13 by means of boxplots. Note that xgboost is deterministic, and therefore,
no variability in its performance can be observed across the 25 runs. As can be seen, the boxplots that correspond to the
AS performances of the normalized features tend to be better with respect to the median closed gap than the ones of the
unnormalized features. This observation is confirmed by Wilcoxon-Mann-Whitney tests at a significance level of α = 0.05

7 The dashboard can be found at https://tsp -features .shinyapps .io /normalization -eda/ and the corresponding implementation at https://github .com /
jonathan -h1 /TSP-EDA.

8 The code for the experiments can be found at https://github .com /jonathan -h1 /FOGA21 _TSP _Experiments.
9 In their work, Pihera & Musliu also considered values of k which depend on n, e.g., k = √

n. We neglect these versions since the feature values for
greater k-values do not differ from those attained with smaller k-values in most cases. The reason is that the number of weakly/strongly CCs in the k-NNG
is monotonically decreasing as k approaches n. Hence, there is a 0 < k′ < n, such that for all k ≥ k′ the number of connected components in the k-NNG is
one.
18

https://tsp-features.shinyapps.io/normalization-eda/
https://github.com/jonathan-h1/TSP-EDA
https://github.com/jonathan-h1/TSP-EDA
https://github.com/jonathan-h1/FOGA21_TSP_Experiments

JID:TCS AID:13585 /FLA [m3G; v1.327] P.19 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 13. Comparison of the closed-gap-performance of different AS models, which are based on different performance scores: PAR10 scores (top panel) and
PQR10 scores (bottom panel). Each row visualizes the distribution of selector performances for a given model (row name) based on normalized (top) and
unnormalized (bottom) features. Moreover, for each of the trained models, the arithmetic mean of the corresponding closed-gap-performances is depicted
as blue triangle (unnormalized features) or green cross (normalized features), respectively.

Table 3
Misclassification counts and costs of xgboost. Results are shown for the selector based on the unnormalized and
normalized features and distinguished by pair of true (rows) vs. predicted algorithm (columns). If the selector
makes the correct prediction (EAX-EAX and LKH-LKH) the costs indicate the feature costs.

Misclassification counts Misclassification costs

unnormalized normalized unnormalized normalized

EAX LKH EAX LKH EAX LKH EAX LKH

EAX 986 162 1 017 131 0.26 32.97 0.04 22.36
LKH 454 242 537 159 9.13 0.10 8.05 0.02

in all cases except for random forests tested on PAR10 scores. Still, in most cases, there appears to be quite large variability
across the performances. However, random forest models in the case of unnormalized features are degenerated at a 0%-
level (see Fig. 13). This can be attributed to the models predicting EAX in most cases for instances that are actually easier
for LKH. We stress that the results are particularly positive if one takes into consideration the severely reduced number of
features used in this study.

Due to the high volatility of the performances, we examine the most promising models in more detail below. At first, we
take a closer look at the results of xgboost in the PQR10 setting. Due to the nonstochasticity the same feature set is selected
during every replication of xgboost. In the case of unnormalized features the selected ones are the span of the number of
nodes in the weak and the median and minimal number of nodes in the strong CCs of the 5-NNG, the minimal number of
nodes in the weak and the variance coefficient of the number of nodes in the strong CCs of the 3-NNG, as well as the skew
of the depth values within the MST. In the normalized case the selected features are the span of the number of nodes in the
weak CCs of the 7- and 5-NNG and the median number of nodes in the strong CCs of the 5-NNG. The selector based on the
unnormalized features used more features than its counterpart, which has been modeled using the normalized features. The
latter model is less complex (and thus more robust) resulting in lower overall feature costs (see Table 3). In tendency, the
model based on the normalized features favors EAX over LKH comparably stronger than the model based on unnormalized
features (see Table 3). Nevertheless, the model based on normalized features is more promising as it is able to decrease the
misclassification costs in all categories (see Table 3).

Complementing the previous investigations, we also examined the results of the support vector machine in case of the
PAR10 score setting. Fig. 14 visualizes, which features have been selected by the support vector machine in each of the
25 replications. Similarly to xgboost, the selectors required in tendency less features if they were normalized. However, the
models used a more versatile set of features and included MST-distance and nearest neighbor distance features as well. Note
that in case of the unnormalized features, two experiments (replications 13 and 20) crashed and are not considered further.
Contrarily to xgboost, the models based on the unnormalized features tend to predict EAX more often; in fact, three models
(replications 4, 11 and 16) almost always predict EAX (see Fig. 15). Nevertheless, the models based on the normalized
features can reduce the misclassification cost of predicting LKH, if EAX is the ground truth, significantly (see Fig. 16). There
is only one exception (replication 8), during which other features were selected, causing a strong bias towards selecting
EAX. Noticeably, the selector of that particular replication is the only one, which (a) did not consider mst_dists-sum as
one of its relevant features, and (b) used nearest_neighbour-min as one of its features.
19

JID:TCS AID:13585 /FLA [m3G; v1.327] P.20 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 14. Features (rows) selected by the support vector machine in the 25 replications (columns). The trained models are based on the unnormalized
features (top), as well as the normalized features (bottom). The cell colors indicate how often a feature has been selected across all 25 replications.

Fig. 15. Misclassification counts of the support vector machine across the 25 replications (columns). Results are shown for the selector based on the
unnormalized (top) and normalized features (bottom) and distinguished by pair of true vs. predicted algorithm (rows).

Now that we have a first indication of what our AS models have actually learned, we will investigate whether we can
observe further patterns based on the underlying TSP subset (National, VLSI, RUE, etc.). When looking at the SBS-VBS gap-
closure of the support vector machine models based on the normalized features (see Fig. 17) large differences per instance
group become apparent. In general, the result is very consistent across replications. Only replication 8, which was already
identified as being biased towards EAX yields better results for VLSI and RUE instances and worse or equal results for
the other instance types. On the TSPLIB instances almost all models achieved optimal results. The second best results are
attained for the national instances. Here there are three additional outlier replications (replications 6, 9 and 22) aside from
replication 8. However, it is not clear what caused the worse performance as during replications 4, 11 and 14 the same
features were selected. In the cases of VLSI and RUE instances the selectors had severe problems to close the performance
gap which is in line with [17] who trained their models on an extended set of (unnormalized) features. This indicates
that the currently available features are not descriptive enough to capture the characteristics of those instances. Overall the
models achieve a significant SBS-VBS gap-closure with the normalized features.
20

JID:TCS AID:13585 /FLA [m3G; v1.327] P.21 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
Fig. 16. Misclassification costs of the support vector machine across the 25 replications (columns). Results are shown for the selector based on the unnor-
malized (top) and normalized features (bottom) and distinguished by pair of true vs. predicted algorithm (rows). If the selector makes the correct prediction
(EAX-EAX and LKH-LKH) the costs indicate the feature costs.

Fig. 17. Percentage of the SBS-VBS-gap that was closed by our selector’s prediction. Results are shown for the SVM model and separated by ECJ2018 instance
subset (rows) and repetitions (columns). The final three columns show the model’s averaged performance across all runs, as well as the respective SBS and
VBS values.

To summarize the proof-of-concept study: the proposed feature normalization has flashed its potential for AS studies.
However, the variance in the performance of the selectors also indicates that the proposed normalization on its own does
not automatically guarantee a perfect AS model. Nevertheless, normalized features seem to lead to less complex models,
which rely on smaller feature sets. Further in-depth investigations of the selectors found and their respective used features
could ultimately lead to a better understanding of typical properties and challenges of TSP instances, and in particular how
these affect the different optimization algorithms.

6. Conclusion

In the context of automated algorithm selection (AS), so-called instance features are numeric values that characterize
problem instances of optimization problems; these features serve as the input variables for machine learning models linking
features to solver performance results. Scalability of AS models across the number of nodes in the context of TSP so far
was limited as instance feature levels are influenced by the instance size. Instance features were either not normalized
at all or normalization was done imprecisely by plain division by the number of nodes n. For the first time, we propose
a precise normalization for a subset of instance features proposed in the literature which proved to have discriminating
power regarding solver performances: features based on the node-depth and the distances in a minimum spanning tree,
and features derived from weakly/strongly connected components and distances in a k-nearest neighbor transformation of
the problem instance. Rigorous theoretical results give precise lower and upper bounds for the respective feature values
which serve for unity-based normalization of each feature.

An empirical comparison of normalized with corresponding unnormalized features on a wide collection of commonly
accepted TSP benchmark sets from the literature shows that normalization can successfully eliminate the effects of the
instance size and facilitates the analysis of solver behavior based on instance characteristics. In addition, a proof-of-concept
AS study highlights the potential of feature normalization. Here, algorithm selectors with normalized input, based on support
vector machines and xgboost, outperform the respective models based on unnormalized feature input with respect to two
considered performance metrics – the penalized average runtime (PAR10) and the penalized quantile runtime (PQR10) –
21

JID:TCS AID:13585 /FLA [m3G; v1.327] P.22 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
and managed to close the respective gap to the VBS substantially. This is especially noteworthy as we so far operated on a
highly reduced feature set compared to the huge amount of TSP features available in general.

Therefore, a straight-forward extension of this work will tackle the derivation of precise normalizations for the complete
set of TSP features which will form the basis of a comprehensive AS study on a large variety of instance sets. Deep learning
based approaches will also be included together with alternative performance indicators. The latter could for instance mea-
sure performance from a multi-objective perspective or even quantify the algorithm’s anytime behavior. In addition, we will
work on a more sound understanding of solver behavior and respective differences related to instance (set) characteristics
in order to improve AS model performance on TSP in general. There is a strong need for complementing existing feature
sets with even more informative features based on insights gained so far.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Data availability

Data will be made available on request. Fruther, we refer the reader to our Dashboard (https://tsp -features .shinyapps .io /
normalization -eda/) and to the R package salesperson (https://github .com /jakobbossek /salesperson).

Acknowledgements

We thank the anonymous reviewers for their valuable input and for sharing their ideas on how to further improve the
paper. The authors acknowledge support by the European Research Center for Information Systems (ERCIS).

References

[1] David L. Applegate, Robert E. Bixby, Vasek Chvátal, William J. Cook, The Traveling Salesman Problem, Princeton University Press, 2006.
[2] Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Thomas Marius Lindauer, Yuri Malitsky, Alexandre Fréchette, Holger H. Hoos, Frank Hutter, Kevin Leyton-

Brown, Kevin Tierney, Joaquin Vanschoren, ASlib: a benchmark library for algorithm selection, Artif. Intell. 237 (2016) 41–58, https://doi .org /10 .1016 /j .
artint .2016 .04 .003.

[3] Jakob Bossek, Salesperson: computation of instance features and R interface to the state-of-the-art exact and inexact solvers for the traveling salesper-
son problem, https://github .com /jakobbossek /salesperson, 2017, R package version 1.0.0.

[4] Jakob Bossek, Katrin Casel, Pascal Kerschke, Frank Neumann, The node weight dependent traveling salesperson problem: approximation algorithms and
randomized search heuristics, in: Proceedings of the 22nd Annual Conference on Genetic and Evolutionary Computation, Cancún, Mexico, GECCO ’20,
ACM, 2020, pp. 1286–1294.

[5] Jakob Bossek, Pascal Kerschke, Aneta Neumann, Markus Wagner, Frank Neumann, Heike Trautmann, Evolving diverse TSP instances by means of novel
and creative mutation operators, in: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, Potsdam, Germany, FOGA
’19, Association for Computing Machinery, 2019, pp. 58–71.

[6] Jakob Bossek, Pascal Kerschke, Heike Trautmann, A Multi-Objective Perspective on Performance Assessment and Automated Selection of Single-
Objective Optimization Algorithms, Applied Soft Computing, vol. 88, Elsevier, 2020, p. 105901.

[7] Jakob Bossek, Frank Neumann, Exploring the feature space of TSP instances using quality diversity, in: Proceedings of the Genetic and Evolutionary
Computation Conference, Boston, Massachusetts, GECCO ’22, Association for Computing Machinery, New York, NY, USA, 2022, pp. 186–194.

[8] Jakob Bossek, Heike Trautmann, Evolving instances for maximizing performance differences of state-of-the-art inexact TSP solvers, in: Proceedings of
the 10th International Conference on Learning and Intelligent Optimization (LION), Ischia, Italy, Springer, 2016, pp. 48–59.

[9] Jakob Bossek, Heike Trautmann, Understanding characteristics of evolved instances for state-of-the-art inexact TSP solvers with maximum performance
difference, in: Advances in Artificial Intelligence (AI*IA), Genova, Italy, Springer, 2016, pp. 3–12.

[10] Jérémie Dubois-Lacoste, Holger H. Hoos, Thomas Stützle, On the empirical scaling behaviour of state-of-the-art local search algorithms for the Euclidean
TSP, in: Proceedings of the 17th Annual Conference on Genetic and Evolutionary Computation, Madrid, Spain, GECCO ’15, Association for Computing
Machinery, 2015, pp. 377–384.

[11] Jonathan Heins, Jakob Bossek, Janina Pohl, Moritz Seiler, Heike Trautmann, Pascal Kerschke, On the Potential of Normalized TSP Features for Automated
Algorithm Selection, Association for Computing Machinery, New York, NY, USA, 2021.

[12] Keld Helsgaun, General k-opt submoves for the Lin–Kernighan TSP heuristic, Math. Program. Comput. 1 (10 2009) 119–163, https://doi .org /10 .1007 /
s12532 -009 -0004 -6.

[13] G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science 313 (5786) (2006) 504–507, https://doi .org /10 .
1126 /science .1127647.

[14] Frank Hutter, Lin Xu, Holger Hoos, Kevin Leyton-Brown, Algorithm runtime prediction: the state of the art, Artif. Intell. 206 (11 2014) 79–111, https://
doi .org /10 .1016 /j .artint .2013 .10 .003.

[15] Pascal Kerschke, Jakob Bossek, Heike Trautmann, Parameterization of state-of-the-art performance indicators: a robustness study based on inexact TSP
solvers, in: Proceedings of the 20th Annual Conference on Genetic and Evolutionary Computation Companion, Kyoto, Japan, GECCO ’18, ACM, 2018,
pp. 1737–1744.

[16] Pascal Kerschke, Holger H. Hoos, Frank Neumann, Heike Trautmann, Automated algorithm selection: survey and perspectives, Evol. Comput. 27 (1)
(2019) 3–45, https://doi .org /10 .1162 /evco _a _00242.

[17] Pascal Kerschke, Lars Kotthoff, Jakob Bossek, Holger Hoos, Heike Trautmann, Leveraging TSP solver complementarity through machine learning, Evol.
Comput. 26 (4) (2018) 597–620, https://doi .org /10 .1162 /evco _a _00215.

[18] Lars Kotthoff, Algorithm selection for combinatorial search problems: a survey, AI Mag. 35 (3) (2014) 48–60, https://doi .org /10 .1007 /978 -3 -319 -50137 -
6 _7.

[19] Lars Kotthoff, Pascal Kerschke, Holger Hoos, Heike Trautmann, Improving the state of the art in inexact TSP solving using per-instance algorithm
selection, in: Learning and Intelligent Optimization, Springer International Publishing, 2015, pp. 202–217.
22

https://tsp-features.shinyapps.io/normalization-eda/
https://tsp-features.shinyapps.io/normalization-eda/
https://github.com/jakobbossek/salesperson
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibE9217DA6D00F59E501EC979925E06FA2s1
https://doi.org/10.1016/j.artint.2016.04.003
https://doi.org/10.1016/j.artint.2016.04.003
https://github.com/jakobbossek/salesperson
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibA1E771470582E677A06CCBE8156F7FA5s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibA1E771470582E677A06CCBE8156F7FA5s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibA1E771470582E677A06CCBE8156F7FA5s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib0D25C409BC0E26A510D5C5FDAFCB502Cs1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib0D25C409BC0E26A510D5C5FDAFCB502Cs1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib0D25C409BC0E26A510D5C5FDAFCB502Cs1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibBF16331C91F97F574C26834D9FE014B2s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibBF16331C91F97F574C26834D9FE014B2s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibC2B45AAA733F0673EF3F57081795644Es1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibC2B45AAA733F0673EF3F57081795644Es1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib1359C8EB2CC9C753399836C010F0547As1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib1359C8EB2CC9C753399836C010F0547As1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibC4CA66767D80A45864B1A721CE894654s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibC4CA66767D80A45864B1A721CE894654s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibCBE4CC9437A22B5CF53350A565324BDBs1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibCBE4CC9437A22B5CF53350A565324BDBs1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibCBE4CC9437A22B5CF53350A565324BDBs1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib2737FF4F1053601BE6F06DC6F58D619Bs1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib2737FF4F1053601BE6F06DC6F58D619Bs1
https://doi.org/10.1007/s12532-009-0004-6
https://doi.org/10.1007/s12532-009-0004-6
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.1016/j.artint.2013.10.003
https://doi.org/10.1016/j.artint.2013.10.003
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib03EF949A87EAFE78746129B962468351s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib03EF949A87EAFE78746129B962468351s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib03EF949A87EAFE78746129B962468351s1
https://doi.org/10.1162/evco_a_00242
https://doi.org/10.1162/evco_a_00215
https://doi.org/10.1007/978-3-319-50137-6_7
https://doi.org/10.1007/978-3-319-50137-6_7
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib91C4838F8132199522F646D6FB2FBD32s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib91C4838F8132199522F646D6FB2FBD32s1

JID:TCS AID:13585 /FLA [m3G; v1.327] P.23 (1-23)

J. Heins, J. Bossek, J. Pohl et al. Theoretical Computer Science ••• (••••) •••–•••
[20] Shen Lin, Brian W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem, Oper. Res. 21 (2) (04 1973) 498–516, https://
doi .org /10 .1287 /opre .21.2 .498.

[21] Thomas Marius Lindauer, Jan N. van Rijn, Lars Kotthoff, Open algorithm selection challenge 2017: setup and scenarios, in: Proceedings of Machine
Learning Research, Brussels, Belgium, vol. 79, 2017, pp. 1–7, http://proceedings .mlr.press /v79 /lindauer17a /lindauer17a .pdf.

[22] Olaf Mersmann, Bernd Bischl, Heike Trautmann, Markus Wagner, Jakob Bossek, Frank Neumann, A novel feature-based approach to characterize algo-
rithm performance for the traveling salesperson problem, Ann. Math. Artif. Intell. 69 (2) (2013) 151–182, https://doi .org /10 .1007 /s10472 -013 -9341 -2.

[23] Yuichi Nagata, Shigenobu Kobayashi, Edge assembly crossover: a high-power genetic algorithm for the traveling salesman problem, in: Proceedings of
the Seventh International Conference on Genetic Algorithms (ICGA 1997), Morgan-Kaufmann, San Francisco, CA, 1997, pp. 450–457.

[24] Yuichi Nagata, Shigenobu Kobayashi, A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem, INFORMS J.
Comput. 25 (05 2013) 346–363, https://doi .org /10 .1287 /ijoc .1120 .0506.

[25] Samadhi Nallaperuma, Markus Wagner, Frank Neumann, Bernd Bischl, Olaf Mersmann, Heike Trautmann, A feature-based comparison of local search
and the Christofides algorithm for the travelling salesperson problem, in: Proceedings of the 12th ACM/SIGEVO Conference on Foundations of Genetic
Algorithms, Adelaide, Australia, FOGA ’13, ACM, 2013, pp. 147–160.

[26] Ronald Peikert, Dichteste Packungen von gleichen Kreisen in einem Quadrat, Elem. Math. 49 (1994) 16–26, https://doi .org /10 .5169 /seals -45416.
[27] Josef Pihera, Nysret Musliu, Application of machine learning to algorithm selection for TSP, in: Proceedings of the 2014 IEEE 26th International Confer-

ence on Tools with Artificial Intelligence (ICTAI ’14), IEEE Computer Society, USA, 2014, pp. 47–54.
[28] R Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2020, https://www.R-

project .org/.
[29] Gerhard Reinelt, TSPLIB–a traveling salesman problem library, ORSA J. Comput. 3 (4) (1991) 376–384, https://doi .org /10 .1287 /ijoc .3 .4 .376.
[30] John R. Rice, The algorithm selection problem, in: Department of Computer Science Technical Report, in: Advances in Computers, vol. 15, Elsevier,

1976, pp. 65–118.
[31] Gabriel Robins, Jeffrey S. Salowe, On the maximum degree of minimum spanning trees, in: Proceedings of the Tenth Annual Symposium on Computa-

tional Geometry, Stony Brook, New York, USA, SCG ’94, Association for Computing Machinery, New York, NY, USA, 1994, pp. 250–258.
[32] Alireza Sarveniazi, An actual survey of dimensionality reduction, Am. J. Comput. Math. 4 (2014) 55–72, https://doi .org /10 .4236 /ajcm .2014 .42006.
[33] Moritz Seiler, Janina Pohl, Jakob Bossek, Pascal Kerschke, Heike Trautmann, Deep learning as a competitive feature-free approach for automated algo-

rithm selection on the traveling salesperson problem, in: Parallel Problem Solving from Nature – PPSN XVI, Springer International Publishing, Cham,
2020, pp. 48–64.

[34] Kate Smith-Miles, Jano Ilja van Hemert, Xin Yu Lim, Understanding TSP difficulty by learning from evolved instances, in: Proceedings of the 4th
International Conference on Learning and Intelligent Optimization (LION), Venice, Italy, vol. 6073, Springer, 2010, pp. 266–280.

[35] Axel Thue, Om nogle geometrisk taltheoretiske Theoremer, Naturforskermöde 1892 (1892) 352–353, https://www.biodiversitylibrary.org /page /3389075.
[36] Jarkko Venna, Samuel Kaski, Local multidimensional scaling with controlled tradeoff between trustworthiness and continuity, in: Proceedings of 5th

Workshop on Self-Organizing Maps, Paris, France, 2005, pp. 695–702.
[37] Thomas Weise, Raymond Chiong, Jorg Lassig, Ke Tang, Shigeyoshi Tsutsui, Wenxiang Chen, Zbigniew Michalewicz, Xin Yao, Benchmarking optimization

algorithms: an open source framework for the traveling salesman problem, IEEE Comput. Intell. Mag. 9 (3) (2014) 40–52, https://doi .org /10 .1109 /MCI .
2014 .2326101.

[38] Thomas Weise, Xiaofeng Wang, Qi Qi, Bin Li, Ke Tang, Automatically discovering clusters of algorithm and problem instance behaviors as well as their
causes from experimental data, algorithm setups, and instance features, Appl. Soft Comput. 73 (2018) 366–382, https://doi .org /10 .1016 /j .asoc .2018 .08 .
030.
23

https://doi.org/10.1287/opre.21.2.498
https://doi.org/10.1287/opre.21.2.498
http://proceedings.mlr.press/v79/lindauer17a/lindauer17a.pdf
https://doi.org/10.1007/s10472-013-9341-2
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibB470F8253B5205F6A338457C30625CAEs1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibB470F8253B5205F6A338457C30625CAEs1
https://doi.org/10.1287/ijoc.1120.0506
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibE50BC5A924F6F07C11B506BEEE922095s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibE50BC5A924F6F07C11B506BEEE922095s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibE50BC5A924F6F07C11B506BEEE922095s1
https://doi.org/10.5169/seals-45416
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibE0DB6BAED78D21D6189B61FA472EBB85s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibE0DB6BAED78D21D6189B61FA472EBB85s1
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1287/ijoc.3.4.376
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib35ED8EFC85509F8729925C97293DF22Es1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib35ED8EFC85509F8729925C97293DF22Es1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibC56988B0938552F32257F7E326AA1C98s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bibC56988B0938552F32257F7E326AA1C98s1
https://doi.org/10.4236/ajcm.2014.42006
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib2CB25B273FD19E2BA2A3B30BEF7D1107s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib2CB25B273FD19E2BA2A3B30BEF7D1107s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib2CB25B273FD19E2BA2A3B30BEF7D1107s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib6567FF4AD0379F6856DCCB844BA4C147s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib6567FF4AD0379F6856DCCB844BA4C147s1
https://www.biodiversitylibrary.org/page/3389075
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib076C80B5D05DB5EE02D5A3E1CA7A4C80s1
http://refhub.elsevier.com/S0304-3975(22)00608-9/bib076C80B5D05DB5EE02D5A3E1CA7A4C80s1
https://doi.org/10.1109/MCI.2014.2326101
https://doi.org/10.1109/MCI.2014.2326101
https://doi.org/10.1016/j.asoc.2018.08.030
https://doi.org/10.1016/j.asoc.2018.08.030

	A study on the effects of normalized TSP features for automated algorithm selection
	1 Introduction
	2 Normalizing features
	2.1 Preliminaries
	2.2 k-nearest-neighbor graph based features
	2.3 Minimum spanning tree depth features
	2.4 Calculation of dmax
	2.5 Nearest neighbor distance features
	2.6 Minimum spanning tree distance features

	3 Instances and algorithms
	4 Exploratory data analysis
	4.1 Normalized vs. unnormalized features
	4.2 The impact of feature normalization on the solver performance

	5 Case study: algorithm selection
	6 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

