
Citation: Clever, L.; Pohl, J.S.;

Bossek, J.; Kerschke, P.; Trautmann,

H. Process-Oriented Stream

Classification Pipeline: A Literature

Review. Appl. Sci. 2022, 12, 9094.

https://doi.org/10.3390/

app12189094

Academic Editor: Luoyi Fu

Received: 1 August 2022

Accepted: 6 September 2022

Published: 9 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

Process-Oriented Stream Classification Pipeline:
A Literature Review
Lena Clever 1,*, Janina Susanne Pohl 1 , Jakob Bossek 2, Pascal Kerschke 3 and Heike Trautmann 1,4

1 Department of Information Systems, University of Münster, 48149 Münster, Germany
2 Department of Computer Science, RWTH Aachen University, 52062 Aachen, Germany
3 “Friedrich List” Faculty of Transport and Traffic Sciences, TU Dresden, 01062 Dresden, Germany
4 Data Management & Biometrics Group, University of Twente, 7522 NB Enschede, The Netherlands
* Correspondence: lena.clever@wi.uni-muenster.de

Featured Application: Nowadays, many applications and disciplines work on the basis of stream
data. Common examples are the IoT sector (e.g., sensor data analysis), or video, image, and text
analysis applications (e.g., in social media analytics or astronomy). With our work, we gather
different approaches and terminology, and give a broad overview over the topic. Our main target
groups are practitioners and newcomers to the field of data stream classification.

Abstract: Due to the rise of continuous data-generating applications, analyzing data streams has
gained increasing attention over the past decades. A core research area in stream data is stream
classification, which categorizes or detects data points within an evolving stream of observations.
Areas of stream classification are diverse—ranging, e.g., from monitoring sensor data to analyzing a
wide range of (social) media applications. Research in stream classification is related to developing
methods that adapt to the changing and potentially volatile data stream. It focuses on individual
aspects of the stream classification pipeline, e.g., designing suitable algorithm architectures, an
efficient train and test procedure, or detecting so-called concept drifts. As a result of the many different
research questions and strands, the field is challenging to grasp, especially for beginners. This survey
explores, summarizes, and categorizes work within the domain of stream classification and identifies
core research threads over the past few years. It is structured based on the stream classification
process to facilitate coordination within this complex topic, including common application scenarios
and benchmarking data sets. Thus, both newcomers to the field and experts who want to widen their
scope can gain (additional) insight into this research area and find starting points and pointers to
more in-depth literature on specific issues and research directions in the field.

Keywords: data mining; big data; stream classification; data stream analysis; supervised learning;
machine learning

1. Introduction

The analysis of stream data has become increasingly important in recent years. For in-
stance, applications based on real-time sensor data or images have become indispensable
in the Internet of Things (IoT). The characteristic of stream data is that it comes in large
quantities and at a high speed. Moreover, this kind of data often is of relatively large dimen-
sionality, i.e., it contains numerous features and observations [1]. Manual data processing
is infeasible; thus, a broad field of data stream mining methods has emerged over the years.
As in the static environment, the core tasks include unsupervised and supervised learning.
In this work, we address research questions and challenges of supervised learning methods
that are exposed to data streams—concretely, we focus on stream classification. Data stream
classification finds several application areas. These include, for example, the detection of
specific gestures or elements in video data, the interpretation of a device’s sensor data,
or the analysis of telescope data [2,3].

Appl. Sci. 2022, 12, 9094. https://doi.org/10.3390/app12189094 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12189094
https://doi.org/10.3390/app12189094
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5251-1169
https://orcid.org/0000-0002-9788-8282
https://doi.org/10.3390/app12189094
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12189094?type=check_update&version=3

Appl. Sci. 2022, 12, 9094 2 of 43

Regardless of the specific application, the process of data stream classification consists
of several steps and modification options. Next to typical classification steps, such as data
preprocessing and training and testing the classifier model, other essential tasks open up in
the streaming scenario. While the initial training can occur in an offline mode, the validation
needs to be performed during the whole lifetime of an online process. Changes in the data,
such as the shift of feature distributions, or the emergence of new classes, can weaken the
algorithm’s quality over time. If a change in the data is detected and the performance of
classification results decreases substantially, the model needs to be updated immediately.
For good model quality, update procedures must guarantee continuous adaptation to the
data stream without neglecting the actual classification task. During the entire usage cycle,
fast processing of new incoming data points must be ensured.

Due to these numerous challenges, a broad field of work on stream classification has
emerged over the years. Methodologically, the field is vast. On the one hand, there is
work on developing and further refining (classification) algorithms. On the other hand,
researchers examine closely related topics such as drift detection and adaption techniques.
Diverse research fields produced problem-tailored solution approaches as well as termi-
nology and taxonomies. Thus, the field also grew in summary papers and comparative
work. Benchmark studies, for example, deal with the comparison of different algorithms
concerning efficiency and speed. Survey papers structure the field of data stream mining
and bring the notations and wordings of the different disciplines to a common understand-
ing. Due to the size of the research field, it is striking that the works often deal only with
a partial aspect of the stream classification process. For example, they focus on change
detection or algorithm structure [4,5]. Newcomers or interested researchers thus have to
navigate through various papers to gain a holistic overview. Our main contribution is to
provide a road map in stream classification literature. Thus, for better comprehensibility,
we structure the research field from a process-centered point of view along a stream classi-
fication pipeline (see Figure 1). For each process step, we refer to relevant, comparative,
and summary works and future research directions. Our underlying literature base spans
approximately 320 papers from the stream classification discipline between 1984 and 2021.
We specifically searched for summary papers and recent publications in the field.

Data
Sources
[Section 3]

Classification
Result

Setup
[Section 5]

Maintenance

Predictions

Configuration

Data
Processing

[Section 4]

[Section 6]

[Section 7.5]

Figure 1. Scheme of the process that is employed by most stream classification algorithms.

The remainder of this work is structured as follows: In Section 2, we provide an
overview of the underlying problem description, the literature base as well as the stream
classification pipeline, which is the underlying structure of this work. Following the stream
classification pipeline, the subsequent sections are organized accordingly: Data Sources
and Application Scenarios (Section 3), Process Data (Section 4), Classifier Algorithms and
Architectures (Section 5), as well as Classifier Maintenance (Section 6). We group the
discussed topics in a decision tree to support the reader’s understanding in each section.
In Section 7, we bring the individual components together and highlight the latest and
future research directions.

2. Background and Stream Classification Pipeline

In the following, we will first define stream classification and its requirements. Second,
we will introduce our stream classification pipeline, which serves as a structure for this
work. Finally, we report on our literature search procedure.

Appl. Sci. 2022, 12, 9094 3 of 43

2.1. Definition and Requirements of Data Stream Classification

Classification is a supervised learning technique for solving decision problems [6].
To avoid confusion with non-stream classification scenarios, we use the terms static or
offline for traditional classification, while we use the terms stream-based or online when
talking about the in-time processing of data streams.

The overall goal of classification is to assign one or more (see Section 5.2) discrete classes
to an observation. For this purpose, a model is trained on a set S = {(~x1, y1), . . . , (~xn, yn)}
of n labeled observations. Such as in common literature, ~xi = (xi1, . . . , xip) ∈ X defines
the feature vector of the i-th observation, i ∈ {1, . . . , n}, with X being the p-dimensional
feature space. Depending on the space, the features are said to be either numerical (xij ∈ R),
ordinal or categorical (~xij ∈ {r1, . . . , rm} for some m > 0), respectively. Moreover, yi ∈ Y
indicates the corresponding class label from the finite set Y := {C1, . . . , Cl} of l classes.

This labeled—so-called training data—is used to construct a classification model or
discriminator D : X × Θ → Y , which ideally predicts the correct class label D(~x) ∈ Y
for a previously unseen observation ~x ∈ X with a high likelihood. Here, Θ defines a
parameter space that is specific to the considered learning algorithm. The performance of a
classification model is usually evaluated by applying the model to and assessing it on a set
of labeled instances, which has not been used during the training procedure itself.

In contrast to static classification problems, the goal of a stream classification algorithm
is to classify data points that are continuously arriving. Thus, the algorithm consists of an
online phase, in which it operates on the incoming data stream S = {(~x1, y1), (~x2, y2), . . .}.
Observations in the data stream follow the formal definition of the offline scenario but
come in a temporal order. According to the literature on basic stream (classification)
algorithms, a data stream is a continuous, ordered, and potentially unbounded sequence of
observations. Data points can arrive at high speed [1].

Since data streams are assumed too large to fit entirely into the main memory, new
observations (or batches) have to be processed and discarded afterward [1]. All operations
on data thus must be highly efficient, since only a limited amount of computational memory
is available. The model must be feasible to predict labels of new incoming observations
at any point in time without a high temporal delay, even when the data stream changes,
e.g., caused by new incoming classes or changing feature space.

In literature, it is assumed that only a limited number of labeled data points are
available for training. This goes with practical application scenarios, where human coders
label a subset of the data to build an automated classification model. Coming to the stream
setting, it is often assumed that newly labeled observations occasionally arrive, such that
the model needs to adapt itself to changes in the data stream in a continuous manner.
This is in contrast to the classical static classification scenarios, in which models are set up
once at the beginning (based on a batch of training data) and remain fixed. Thus, stream
classification aims to train a continuous sequence of classification models.

2.2. Process-Oriented Stream Classification Pipeline

In general, stream classification follows the pipeline sketched in Figure 1. First, data
are integrated from one or many sources depending on the respective streaming scenario.
Researchers and practitioners can use suitable benchmarking datasets to evaluate their
algorithms and solutions. Datasets are as versatile as the application areas of stream classi-
fication, as discussed in Section 3.2. Together with respective frameworks in Section 3.3 for
automated stream data classification, they provide a working environment for experiments.

Independent of which dataset has been used, most probably, the data must be prepared
before the actual classification. Data processing could include, e.g., segmentation of various
data sources, labeling, or data type-dependent preprocessing, e.g., feature extraction or
feature space simplification.

Coming to the classification model itself, we can differentiate between two states.
Commonly, in the first phase, an initial model is set up. In Section 5.2, we give a detailed
overview of influential algorithms in the field. We structure algorithms in terms of their

Appl. Sci. 2022, 12, 9094 4 of 43

architecture and type. After the setup phase, the classification algorithm can be used
continuously to predict the class of incoming data records.

During its lifetime, a stream classifier needs to be maintained. To understand the
challenges of classifier maintenance, we introduce basic concept drift analysis literature
in Section 6. Therein, we will give insights into the types of changes, as well as into
their detection. Further, we give an overview of stream classification models’ evaluation
and update procedures. Next to the continuous evaluation and update of the model,
the algorithm’s parameters should be configured continuously during the whole lifetime of
the model.

2.3. Literature Base

We first searched for various summary and comparative works in the field as a basis
for this work. We conducted our search on Google Scholar (see www.scholar.google.com
(accessed on 5 September 2022)), Web of Science (see www.clarivate.com/webofsciencegroup/
solutions/web-of-science (accessed on 5 September 2022)), and ArXiv (see www.arxiv.org
(accessed on 5 September 2022)). We combined terms of the individual process steps with the
keywords “survey”, “review”, and “benchmarking”. An overview of the search terms used for
each step of the stream classification pipeline is depicted in Table 1. For example, we collected
papers on the drift detection process step by searching for “stream classification” + (“drift
detection”, “change detection”, “drift adaptation”) + (“survey”, “benchmark”, “review”). We
mainly focused on the last five years and included influential work via a backward search.

Table 1. Overview over search terms of the structured literature search.

Step Search Terms

Data sources Application, dataset, repository, framework
Data processing Input, window, segmentation, preprocessing, labeling
Setup Algorithm

Maintenance Drift detection, change detection, drift adaptation, evaluation, monitoring, assessment, drift detection
evaluation, ensemble evaluation

Configuration Configuration, tuning, parameter

We further searched for the most recent work of the last three years by searching
for the term “stream classification” on all three platforms. In addition, we have checked
all papers to observe whether they fit qualitatively and thematically. Papers without a
recognizable conference, journal affiliation, or quality issues (e.g., apparent lingual deficits)
were sorted out. All in all, our search ended up with 329 papers. Within our literature
base, we found no work which goes along with the idea of structuring papers employing
a stream classification pipeline. Scouted papers mainly focused on specific steps of the
stream classification pipeline or took a more high-level view of data stream mining.

3. Data Sources and Benchmarking

The most relevant difference between data stream classification and batch processing
is that data comes in a steady, endless stream of large quantities, which must be processed
continuously and immediately. Many application areas require this kind of processing,
as observed in Figure 2, where we give an overview of the topics covered in this section.

www.clarivate.com/webofsciencegroup/solutions/web-of-science
www.clarivate.com/webofsciencegroup/solutions/web-of-science

Appl. Sci. 2022, 12, 9094 5 of 43

Data Sources

&
Benchmarking

Internet of Things

Image/Video

Application Areas

Data Types

Benchmark Frameworks (incl. Algorithms, Drift Detection, Evaluation, …)

Numerical

Text

Benchmark Datasets

Activity and Motion Recognition

Social Media

Satellite/Telescope Data

Datasets

Generators
Artificial Generators

Application-Oriented Generators

Static Datasets

Stream Datasets

Finance

…

Figure 2. Typical application areas and data types, as well as a categorization of benchmarking
datasets and frameworks, stand at the beginning of a stream classification pipeline.

3.1. Application Areas and Data Types

The most relevant difference between data stream classification and batch processing
is that data comes in a steady, endless stream of large quantities, which must be processed
continuously and immediately. Many application areas require this kind of processing,
as observed in Figure 2, where we give an overview of the topics covered in this section.
Stream classification applications can be found in almost all areas where data streams are
generated, but they differ depending on the respective conditions and problems, such as the
underlying data types. Typical stream data types are numerical or categorical data of sensor
environments, video or image data, and text data, for example, from social media sources.
In the following, we give an overview of the largest application areas found during our
literature search. Additionally, an overview of common stream classification application
areas is given in the works of [7,8].

A frequently mentioned field where stream classification algorithms are applied is
the IoT sector. IoT applications rely on sensor sets or intelligent devices, which constantly
gather data and monitor the surroundings [9]; an exemplary use case is smart vehicles [10].
Intelligent decisions must be made in real time by data stream algorithms based on sensor
data input for automated driving maneuvers. In addition to driver support, vehicle data
can also be used to assist public transport, e.g., to detect traffic jams or delays [11].

In the field of activity recognition, video data can be analyzed with the help of stream
classification algorithms [12–14]. Typical application scenarios are, e.g., human motion
capturing for the automatic recognition of sign language or accident detection in home
surveillance applications for older adults, or vehicle detection [2,15,16]. In addition to
surveillance applications in public and private spaces, stream classification algorithms are
also used in the entertainment sector. For instance, human gesture recognition is utilized in
video game development [13].

With the rise of social media, a new application area for stream-based algorithms was
born. Participatory online platforms such as Facebook or Twitter invite users to publish their
content in texts, photos, and videos. Over time, several algorithms have been developed
to analyze the development of discussions within these platforms. Tasks and problems
here are, for example, the automated detection of hate speech or cyber-bullying [17]. There

Appl. Sci. 2022, 12, 9094 6 of 43

are also efforts to detect texts that indicate health problems such as depression or even
emergency event detection [18–20]. Social media researchers are dealing with concise
texts compared to other applications on (stream) text data, such as spam email detection.
Therefore, an algorithm has less contextual information to learn the true meaning of texts
for classifying, e.g., sentiments [21,22].

Another application area for stream algorithms is the analysis of telescope data. De-
tecting stellar behavior or other astronomical events requires algorithms that can deal with
large amounts of image data [3,23–25]. In contrast, ref. [26] uses satellite data to monitor
forest development, and ref. [27] uses sensor and satellite data to detect abnormal events
(fires, animal movement) in forest areas. Another application of image data is the health
industry, in which medical image data is used to detect abnormalities or signs of illness [28].
Recently, images related to COVID-19 patients were also in the focus of research, i.e., facial
mask detection and ultrasound images [29,30].

Stream algorithms are also used in the financial sector to detect financial distress
periods or abnormal developments and intrusion detection [31]. In the left part of Figure 3,
we show the distribution of papers in our literature base distinguished by the disciplines in
which they were published.

0

10

20

30

Astr
on

om
y

Com
pu

te
r s

cie
nc

e

Fina
nc

e

Hea
lth

Hum
an

 vi
sio

n

In
du

str
y

In
te

rn
et

 o
f T

hin
gs

IT
 se

cu
rit

y

Soc
ial

 m
ed

ia

Ve
hic

les

Application area

N
um

be
r

of
 p

ub
lic

at
io

ns

0

50

100

 Im

ag
e/

Num
er

ic

 I
m

ag
e

 N
um

er
ic

 N
um

er
ic/

Te
xt

 T
ex

t

 T
ex

t/I
m

ag
e

Data types

N
um

be
r

of
 p

ub
lic

at
io

ns

Figure 3. Distribution of outlet disciplines and data types in our literature base.

A comprehensive analysis often requires the combination of different data sources
and types, such as the fusion of different sensor data or merging of image and text data
in the social media area [9]. In our literature base, approximately 10% of the publications
incorporate more than one data type. The results can be observed in the right part of
Figure 3.

3.2. Benchmark Datasets

As shown in the previous section, many application areas for stream classification exist.
To compare the performances of algorithms across different scenarios, one usually utilizes
synthetic, or real-world benchmark datasets [13]. Tables 2 and 3 provide an overview of
general-purpose datasets for both categories. For an extended overview, publicly accessible
platforms and repositories such as OpenML (see www.openml.org (accessed on 5 September
2022)) by [32] or the UCI Machine Learning Repository (see www.archive.ics.uci.edu
(accessed on 5 September 2022)) can be used. It should be noted, though, that the datasets
available on these platforms are primarily used in static supervised learning. A recent
survey by [33] includes many of the datasets listed below, as well as a comparison of which
dataset was used most often in previous studies by other researchers.

www.openml.org
www.archive.ics.uci.edu

Appl. Sci. 2022, 12, 9094 7 of 43

The content of Tables 2 and 3 has been derived from the surveys of [4,34–39]. Further-
more, the works of [40,41] about multilabel stream classification as well as semi-supervised
problems instances have been included, respectively. In addition, ref. [42] proposes a
process for generating artificial problem instances and thus presents several synthetic gen-
erators and datasets in our tables. These summarizing works serve as a basis for our tables,
since they generally focus on stream classification, covering a broad range of application
areas. Other works focus on more specific application scenarios, and thus, they are briefly
discussed below:

Refs. [43,44] focus on the task of intrusion detection, while ref. [28] give an overview
of datasets including medical images. Here, for example, ultrasound images can be used
to detect anomalies early. For human activity recognition problems, refs. [13,14] provide
an extensive overview. Activity recognition problems encompass images of cameras
that capture people’s movements to, for example, monitor patients in hospitals or detect
threats via video surveillance in public spaces [14]. For activity recognition problems,
the Center for Advanced Studies in Adaptive Systems (CASAS) (see http://casas.wsu.edu/
(accessed on 5 September 2022)) also provides a collection of datasets. Ref. [8] list datasets
in the IoT domain, while ref. [45] describe datasets for text detection and recognition
in images. Although social media is another essential application for text recognition in
stream classification, no benchmark exists. This is partly due to the network’s strict legal
data-sharing restrictions. Ref. [46] propose not to share the data but the algorithms to solve
this lack of opportunities for algorithm performance comparison. Then, the researcher
holding the data can run all algorithms on one machine based on his or her data set and
can publish the comparative results.

3.2.1. Generators

In their work, ref. [4] differentiate between two different kinds of generators: artifi-
cial generators return a carefully structured and parametrized problem landscape, while
application-oriented generators produce instances for a real-world problem with artificial
drifts. Generators of the first group implement an artificial mathematical concept, e.g., a
hyperplane, that defines the problem landscape. The function returns an endless stream
of numerical data that can be used as input data for stream classification. By adjusting
the function parameters, the problem landscape can be shaped differently. One advantage
of using this kind of dataset is that we have a ground truth a priori, i.e., we know about
changes in the underlying data distribution. Additionally, unlike publicly available real-
world datasets, the stream is potentially unbounded, since new instances can always be
generated. In Table 2, we present standard generators of synthetic stream classification
datasets created via predefined functions. One example is the Sine generator that returns
points above or below a sine curve [47].

Generators of the second group produce data records based on application-oriented
scenarios. An example of such a generator is the Ocean Waveform Generator by [48], which
simulates three different wave shapes that a stream classification algorithm has to identify.
The prediction of different wave shapes is, e.g., required for the operation of wave energy
converters for sustainable energy generation [48].

Table 2 depicts each generator’s (abbreviated) name and a short description of its
application domain. More than two references imply that other researchers significantly
enhanced or altered the dataset. Furthermore, we included the number of attributes of
the generated dataset, the number of classes, and, if so, which concept drift (for detailed
information about different types of concept drifts, see Section 6). The authors included:

http://casas.wsu.edu/

Appl. Sci. 2022, 12, 9094 8 of 43

Table 2. Synthetic data generators from different application scenarios of stream classification.
Above the horizontal line, we summarized artificial generators, while we considered application-
oriented generators below.

Generator Description Attributes No. Classes Concept Drift

A
rt

ifi
ci

al

BG-FD [49] Binary Generator with Feature Drift 2 categorical 3 Feature
Circle [47] Four contexts defined by four circles 2 numerical 2 Gradual
Gauss [47] Normally distributed data 2 numerical 2 Abrupt
Mixed [47] Different functions used 2 numerical, 2 categorical 2 Abrupt

RandomRBF [50] Random Radial Basis Function
Simple: 10 numerical
Complex: 50 numerical

Arbitrary None

R-RBF with drift [50] Random RBF with drift
Simple: 10 numerical
Complex: 50 numerical

Arbitrary Gradual

RHG [51] Rotating Hyperplane Generator Arbitrary Arbitrary Gradual, Incremental
RHG with drift [50] RHG with drift for each attribute Arbitrary Arbitrary Incremental

RTG [51] Random Tree Generator
Simple: 10 numerical, 10 categorical
Complex: 50 numerical, 50 categorical

Arbitrary Abrupt

RTG-FD [49] RTG with Feature Drift Simple: 20/Complex: 100 2 Features
SEA [52] Streaming Ensemble Algorithm 3 numerical 2 Abrupt
SEA-FD [49] SEA with Feature Drift 3 numerical 2 Feature
Sine [47] Points below or above sinus curve 2 numerical 2 Abrupt
STAGGER [53] Boolean function 3 categorical 2 Abrupt

A
pp

li
ca

ti
on

-o
ri

en
te

d Agrawal [54] Loan applications approval 6 numerical, 2 categorical 2 None
LED [55,56] Digit prediction on LED display 24 categorical 2 Abrupt
LED with drift [50,56] LED generator with drift 24 categorical 2 Arbitrary
Rotating checkerboard [57] Generates virtual drift of checkerboard 2 numerical 2 Gradual

WaveForm [48,55] Detect Wave Form
Simple: 21 numerical
Complex: 40 numerical

3 Abrupt

WaveForm-FD [48,55] Detect Wave Form with Feature Drift
Simple: 21 numerical
Complex: 40 numerical

3 Feature

Table 3. Real-world datasets from different application scenarios of stream classification.

Dataset Description Observations Attributes No. Classes Discipline

Adult [58] Predict income 48,842 14 mixed types 2 Miscellaneous
Airline [59] Flight delays in USA 116 × 106 13 mixed types 2 Vehicles
AWS Prices [60] Bids on server capacity 27.5 × 106 6 mixed types Arbitrary Industry
CIFAR [61,62] Tiny colour images 60,000 32 × 32 pixels 10 Computer Vision
COCO [45] Text recognition in images 173,589 5 mixed types Arbitrary Computer Vision
Electricity [47,63] Relative price changes 45,312 8 mixed types 2 Industry
ECUE 1 [64] E-mail spam filtering 10,983 287,034 tokens 2 Miscellaneous
ECUE 2 [64] E-mail spam filtering 11,905 166,047 tokens 2 Miscellaneous
E-Mail data [65] E-mail headings 1500 913 words 2 Social Media
Forest Covertype [66] Covertype for quadrants 581,012 54 mixed types 7 Miscellaneous
Gas Sensor Array [67,68] Gas type identification 13,910 8 mixed types 6 Industry
Kddcup99 [69] Intrusion detection 494,021 41 mixed types 23 IT-Security
Keystroke [70] Detect imposter keystrokes 20,400 31 mixed types 10 IT-Security
MNIST [71] Handwritten digits 70,000 28 × 28 pixel 10 Computer Vision
Luxembourg [72] Classify internet usage 1901 20 mixed types 2 Social Media
NOAA Rain [73] Predict rain 18,159 8 mixed types 2 Miscellaneous
Nursery [74] Rank applications for nursery schools 12,960 8 numerc 5 Miscellaneous
Ozon [75] Preidct ozone levels 2534 72 mixed types 2 Miscellaneous
Outdoor objects [76] Recognize objects in garden 4000 21 mixed types 40 Computer Vision
Poker Hand [77] Hand of five cards 1 × 106 11 mixed types 9 Miscellaneous
Powersupply [69] Predict hour on basis of power supply 29,928 2 numeric 24 Industry
Rialto Timelaps [78] Identify buildings 82,250 27 numeric 10 Computer Vision
Sensor [69] Identify sensor ID 2,219,803 5 numeric 54 Miscellaneous
Usenet [79] Messages sent in groups 1500 99 attributes 2 Social Media
Spam Assassin Collection [80] Spam E-Mails 9324 39,917 words 2 Social Media
Weather [57] Predict occurrence of rain 18,159 8 mixed types 2 Miscellaneous

3.2.2. Datasets

Artificially generated datasets are not the only type of dataset for stream classifi-
cation. Often, datasets collected in real-world settings are used as well, as observed in
Table 3. The underlying classification tasks range from predicting numerical price changes

Appl. Sci. 2022, 12, 9094 9 of 43

in the electricity markets of Australia to object recognition by using thousands of tiny
images [47,61]. A common practice regarding real-world datasets is the concatenation
of static smaller sets to mimic streaming scenarios, i.e., to connect them in a series and
create consecutive artificial timestamps. An example of this approach is the famous MNIST
dataset, consisting of images of handwritten numbers, which is used across various ma-
chine learning domains [62,81]. In Table 3, the name of the dataset, as well as a short
description of its content, is given. We referenced the original authors of the dataset, some-
times alongside other researchers who conducted significant enhancements. In addition,
the number of records, attributes, assigned classes, and the general discipline from which
the dataset was collected are given.

Although today, more data is produced than ever in the past, it is generally criticized
that only a few large datasets exist for benchmarking purposes [34]. Additionally, the ex-
isting datasets have flaws: for example, refs. [39,82] detect irregularities in the Electricity
dataset provided by [63], since it incorporates dependent labels. Prices succumb to long
periods of ups and downs. Moreover, delays often occur in real-world problems, and labels
are not directly available [83]. Thus, many researchers identified producing more suitable,
high-quality datasets as an important future work endeavor [34,35,84–86].

3.3. Benchmarking Frameworks

We define a framework as an open-source application that enables the execution of a
stream classification pipeline. Over the years, multiple frameworks have been proposed to
help users perform certain parts of the stream classification process, as given in Figure 1.
Frameworks facilitate the interaction of different stream classification tasks, enhance in-
teroperability and thus contain all required building blocks for algorithm design [87].
They follow a defined program flow consisting of unmodifiable code. A framework may,
for example, include data generators or real-world datasets for benchmarking, algorithms,
and metrics that can be computed for monitoring purposes. That is, it should contain
all principal parts of our stream classification pipeline. In contrast, a loose or arbitrary
combination of different algorithms for a specific application scenario is not considered
a framework.

During our literature search, we encountered several works listing software frameworks.
A general overview can be found in the work of [5,35,37,88,89]. We excluded frameworks
such as Vowpal Wabbit (see www.vowpalwabbit.org (accessed on 5 September 2022)) or
RapidMiner (www.rapidminer.com (accessed on 5 September 2022)), since they—although
they can handle a large amount of data for batch processing—were not specifically de-
signed for stream classification purposes and did not incorporate, e.g., essential stream
classification algorithms. In the studies of [90,91], the authors compare stream processing
frameworks that facilitate stream mining tasks but cannot be used for classification.

In the following, we give an overview of relevant frameworks, which are also sum-
marized in Table 4. Below, we provide the framework’s name and an overview of which
process step of our pipeline can be executed via which framework. Additionally, each
framework will be discussed briefly:

The Very Fast Machine Learning toolkit (VFML) concentrates on high-speed data stream
mining and very large datasets [92]. It incorporates a collection of datasets from the UCI
repository. Moreover, it includes functions for feature space simplification. Its core com-
prises a collection of algorithms: primarily tree-based, k-nearest neighbor, and deep neural
network approaches. It contains some functions for monitoring, e.g., the development of
tree-based algorithms, but has no focus on either evaluation or continuous monitoring.

Jubatus is a framework developed during a Japanese research project [93]. The fo-
cus lies on distributed processing. Notably, it provides a model-sharing architecture for
practical training and collaboration of the classification models. Thus, Jubatus aims to re-
duce the high networking costs and high latency as inevitable consequences of distributed
environments. It includes nineteen test datasets from various sources, e.g., Twitter or
malware classification. Further, it incorporates functions for feature space simplification

www.vowpalwabbit.org
www.rapidminer.com

Appl. Sci. 2022, 12, 9094 10 of 43

next to preprocessing algorithms specially designed for textual data, i.e., vectorization and
removal of links. All basic stream classification algorithms, such as, for example, Hoeffding
trees (see Section 5.2.1), are integrated into the framework [93]. Nevertheless, it contains
only essential evaluation and monitoring functionality, such as a confidence value for each
assigned class label. In any related project, it can be executed via the analytics engine
Spark [94] or the Python sci-kit-learn library.

Table 4. Overview of relevant stream classification frameworks.

VFML Jubatus streamDM River MOA

Artificial datasets X X X X X
Real-world datasets X X X X
Preprocessing X X X X X
Data Segmentation X X X X X
Labeling X X
Trees X X X X X
Neural networks X X X X X
Neighborhood-based X X X
Frequency-based X X X X X
Rule-based X X X X X
SVM X X X
Ensemble X X X X
Concept drift detection X X X
Update Mechanisms X X
Evaluation X X X X X

The Stream Data Mining library (streamDM) developed by Huawei is an extension of
Spark [95]. Like Jubatus, it is an extensible and programmable framework focusing on
the distributed processing of datasets. The input data stream is divided into processable
batches, then forwarded into the Spark engine to generate classification results. Since
it has connections to the MOA framework discussed below, it is possible to import all
datasets available in MOA. Nevertheless, the authors claim that due to the implementation
in C++, it is faster than MOA. streamDM only incorporates different approaches to read
the data stream but does not offer explicit preprocessing steps. However, it offers more
available learners than Jubatus, such as various stochastic gradient descent approaches,
bagging, different Hoeffding trees, and ensemble learners. Likewise, it offers a broader
evaluation and monitoring functionality, such as prequential evaluation and metrics based
on a contingency table.

River is the recent result of the fusion of the sci-kit-multiflow and the creme Python
libraries [96]. It grants access to the whole scikit-learn (see www.scikit-learn.org/stable/
index.html (accessed on 5 September 2022)) library and the streaming background of
the python package creme (see www.pypi.org/project/creme/ (accessed on 5 September
2022)). River includes nearly all benchmark datasets in Table 2 and various preprocess-
ing approaches such as feature selection and normalization. Additionally, numerous
classification algorithms and a broad range of monitoring and evaluation methods were
incorporated, e.g., for concept drift handling. It is faster than the classical machine learning
libraries PyTorch and Tensorflow if one observation at a time must be labeled, but ref. [88]
claim that it is slower than MOA, since Java code is expected to run faster than Python code.

Finally, we discuss the most frequently cited framework, Massive Online Analysis
(MOA) [97]. It merges numerous functionalities of the previously mentioned frameworks,
especially related to River and streamDM. It is based on WEKA, the Waikato Environment
for Knowledge Analysis framework, a toolkit for batch machine learning algorithms [98].
The framework is written in Java and can be executed via a built-in graphical user in-
terface (GUI) or the command line. Additionally, it holds interfaces to the statistical
programming language R (see www.jwijffels.github.io/RMOA/, www.cran.r-project.org/
web/packages/streamMOA/index.html (accessed on 5 September 2022)).

www.scikit-learn.org/stable/index.html
www.scikit-learn.org/stable/index.html
www.pypi.org/project/creme/
www.jwijffels.github.io/RMOA/
www.cran.r-project.org/web/packages/streamMOA/index.html
www.cran.r-project.org/web/packages/streamMOA/index.html

Appl. Sci. 2022, 12, 9094 11 of 43

MOA was initially developed to facilitate stream classification performance mea-
surement to manage the stream algorithm’s speed, memory usage, and accuracy. Thus,
the maximum amount of available memory space in MOA is fixed, while the other two di-
mensions can be adjusted to the user’s needs. Currently, its limits are handling up to
ten different class labels. It includes many datasets we identified as relevant benchmark
datasets in Table 2 and some from Table 3. It holds many preprocessing approaches such
as feature selection and discretization. MOA includes many stream classification-related
algorithms, such as decision trees and Naïve Bayes classifiers, as well as several evaluation
methods such as the prequential holdout. Advanced application scenarios include exten-
sions such as a Tweet-reader to collect Twitter tweets directly, a framework for sentiment
analysis, and data reduction techniques on streams without drift. Additionally, it contains
all the functionalities of the Scalable Advanced Massive Online Analysis (SAMOA) frame-
work, which is no longer maintained but has been integrated into MOA. SAMOA was
an Apache project to create a new platform that performs stream mining in a distributed
environment. Lastly, different applications and platforms, such as OpenML [32], provide
easy access to MOA. For further information, the interested reader is referred to [50].

4. Data Processing

When data is consolidated from different sources, as the first step (see Figure 1), nu-
merous integration steps are required. In this section, possible ways of input segmentation,
preprocessing methods, and labeling techniques are discussed. Again, an overview of all
the covered subtopics is given in Figure 4.

Data Processing

Instance Selection
Preprocessing

Labelling

Feature Selection

Sliding Time Window

Data Segmentation

Landmark Time Window

Adapted Time Window

Damped Time Window

Tilted Time Window

Feature Space Simplification

Semi-Supervised

Active Learning

Problem of Imbalanced Data

Noise Removal

Figure 4. Overview of data preparation methods applicable for data stream classification purposes.
Here, the handling of data of the respective sources is specified.

4.1. Preprocessing

Data preprocessing is nearly all knowledge discovery processes’ first and most critical
step. Frequently, this step takes more time than the actual analysis step [99]. Raw data
is usually low quality and full of inconsistencies, missing values, noise, or redundancies.
This challenge could cause the performance of classification models to fall short of their
capabilities. By proper preprocessing, the quality and reliability of automated classification
can be improved significantly. Working with stream data is accompanied by specific
properties, e.g., that it cannot be stored in its entirety and data points often arrive at high
speed. The typical preprocessing steps have to be treated differently than in classical offline
settings [99]. Time is a critical component of stream classification problems compared to
the offline setting. Typical offline methods benefit efficiency because some approaches can
iterate over the data multiple times to identify essential features or align feature spaces for
better comparability with enough processing time. Regarding the requirements of online

Appl. Sci. 2022, 12, 9094 12 of 43

learning, one iteration should be enough. However, this is not always precisely handled in
practice. For example, multiple iterations over a selection of data points are also possible.
Nevertheless, not all data points can be stored permanently, and preprocessing steps should
be kept in time and short. In addition, the emergence of new classes and features or the
change of feature value spaces makes accurate preprocessing difficult. An example is
an image or video data, as in surveillance applications or gesture recognition scenarios.
Usually, processing pixels is a complex task due to a large data quantity and the fact that
only a small amount of pixels captures essential information. The data needs to be reduced
before the analysis for efficient computations.

While most summarizing papers in the field of stream data preprocessing cope with
sub-aspects, the work of [91,99] give a broad overview of tasks and techniques. The authors
elaborate on the current status, such as challenges and research directions. Within their
extensive survey, ref. [99] review the mentioned preprocessing algorithms and evaluate
them against several synthetic and real-world benchmarking datasets by comparing the
accuracy of classification results. As a basis, they use the datasets, as well as generators
of the MOA framework. In the following, we will structure typical preprocessing steps
according to the work of [99].

4.1.1. Feature Selection

According to [91,99] dimensionality reduction can be achieved by feature selection.
Here, methods are divided into filters (applied prior to the actual learning algorithm),
wrappers (built upon an evaluation of features), and embedded methods (where the
selection is a part of the learning algorithm itself). For stream scenarios, especially the first
category is of interest, since the other two approaches are usually too time-intensive or
require multiple iterations over data points. Further, filter methods are robust concerning
changes in the data streams. Classical filtering methods are, for example, the evaluation of
the features based on the information gain or the χ2 index [99].

A well-known filter approach is the DXMiner, which can react to drifts and changes in
feature space. The algorithm uses the deviation weight measure to rank features during
the classification phase [100]. DXMiner then uses the most discriminative features of the
latest labeled instances to classify new, unseen observations. Within their exhaustive bench-
marking study, ref. [99] demonstrate that DXMiner is the only algorithm that addresses the
problem of concept drifts in stream data. The authors point out that feature selection never
improved classification accuracy, but some algorithms yield comparable results with lower
model complexity. Again, DXMiner is proposed as the best-performing method here.

4.1.2. Instance Selection

According to [99], the selection of instances is another preprocessing step that usually
differs from the traditional offline setting. Selecting appropriate data points is vital for
the training phase of an algorithm. Especially after the appearance of a drift in the data
stream, it is necessary to select new instances for training and discard data points that
belong to outdated concepts in the stream. While drift detection methods are discussed
in detail in Section 6, here, the focus is only on the training instance selection methods.
The goal is to evaluate which data points should be used for the training, or in other
words, which data records represent the current status of the data stream. One way to
identify a change in the data stream is to analyze data points regarding their distance to
other stream data records. Nearest neighbor methods, for example, bring data points into
spatial dependencies. In addition, the temporal component can be considered by sliding a
fixed-size window over a data stream or by weighing instances according to their age (see
Section 4.2).

An influential work in this context is the IBL-DS (Instance-based learning on data
streams) algorithm by [101]. The algorithm follows instance-based learning, which means
that predictions are made ad hoc based on current data—called the case base—rather than
using a previously created model. Thus, the temporal component and possible changes in

Appl. Sci. 2022, 12, 9094 13 of 43

the data stream are not disregarded, which is beneficial, especially in scenarios with concept
drift. The case base is the pivotal point in this approach. Since not all data points can be
stored, the selection must be made carefully. The instances should reflect the characteristics
of the current data stream, and the feature space should be represented as balanced as
possible. Thus, neither regions are over- or under-represented. Furthermore, only instances
that belong to the current concept in the data stream should be included. The approach is
implemented via the WEKA interface. It has been evaluated on many synthetic datasets
such as STAGGER, Gauss, Sine2, or Hyperplane, as well as on real-world stream datasets
(the stream datasets were artificially generated based on static datasets of the UCI package.
IBL-DS is evaluated on the car, nursery, and balance dataset). A drawback of nearest
neighbor approaches is the computational complexity [99].

Ref. [64] proposed an instance selection method with two levels, called Competence-
Based Editing (CBE). The first stage is noise removal and the second cope with redundancy
reduction. The authors present the algorithm in the context of spam detection. Within their
benchmarking study, ref. [99] points out that CBE is evaluated as the best option, for in-
stance, in model accuracy and reduction.

4.1.3. Feature Space Simplification and Noise Removal

Following the taxonomy of [99], feature space simplification is the third category of
data preprocessing methods. An example here is the discretization of feature values. This
step is crucial for some classification algorithms (e.g., Naive Bayes) because they only work,
or operate better, on discrete data [99]. Ref. [102] present a two-step approach, which
thrives on finding the optimal discretization of the data. First, the Partition Incremental
Discretization algorithm (PiD) summarizes data and creates preliminary intervals, e.g., of
equal width. These intervals are then optimized by splitting whenever the number of
elements in an interval is above a predefined threshold. Second, the intervals are merged
using a discretization metric, e.g., a minimum description length discretizer. The approach’s
performance depends not least on the choice of the initial intervals. Another example of
feature space simplification is topic modeling in terms of textual data. Social media data
is usually relatively short, creating a sparse feature space. This makes traditional NLP
methods more error-prone. Ref. [22] perform topic modeling on the sparse text data and
then represent the texts based on contained topics rather than just on the words present.

Another challenging task in preprocessing is the step of noise removal. Within their
extensive study, ref. [103] elaborate on the different noise scenarios in stream data. They
distinguish between stationary noise in evolving data streams, evolving noise in stationary
data streams, and evolving noise in evolving data streams. A data stream is named
“evolving” when some drift (see Section 6) occurs. In contrast, “evolving noise” means
that the noise changes over time, such as, for example, a sensor record when the sensor
performance decreases with its lifetime. The authors conclude that there are numerous
challenges in noise removal within stream scenarios. At the point of their study, noise is
often tackled by building robust classifier models (e.g., [104]) instead of removing noisy
data records. Further, the scenarios of evolving noise are not investigated so far [103].

In line with noise removal, the problem of outlier detection is discussed in the literature.
Ref. [105] give a structured overview of outlier detection algorithms in the stream data
environment. As this is commonly used, they focus on the Local Outlier Factor technique
(LOF). The initial idea is that density is measured, i.e., the number of data points located in
the immediate environment. Then, the density of one data point is compared to the densities
of its neighbors. Data points with a significantly lower density than their neighbors are
considered outliers. Ref. [105] conclude that the LOF technique is only partially valuable
in stream scenarios. The main drawback is the extensive computational cost and memory
usage needed to calculate the distances. To overcome this, they propose the idea of
LOF based on a subset of data points. Nevertheless, further work and benchmarking
studies should be conducted on outlier detection. Ref. [99] conclude that there is room
for improvement in all preprocessing tasks, especially when it comes to high dimensional

Appl. Sci. 2022, 12, 9094 14 of 43

and specifically imbalanced or multi-labeled data. Most methods are in the first stage of
adaption from the offline setting and have issues regarding efficiency. Future research
should focus on proper feature selection methods in stream scenarios with concept drift.
This goes especially for reoccurring concepts in the data. The authors pose the need for
better algorithms to handle the discretization of features online. Ref. [91] additionally
refer to the future challenge of missing values imputation, which is a complex task in data
stream mining, as here, relationships among features and observation have to be taken
into account.

Next to the extensive work of [91,99], there exists other summarizing work in the field,
which, however, is more context-specific. In [106], preprocessing is elaborated for the activ-
ity recognition domain. The authors introduce different approaches to extract meaningful
sensor data and evaluate the approaches by the CASAS intelligent home dataset.

4.2. Data Segmentation

Since the data stream is possibly unbounded in stream classification, it is often seg-
mented into batches called windows when it comes to the actual processing, e.g., drift
detection or updating. An overview of the most often described time window types in our
literature base can be observed in Figure 5.

Time
Sliding Time Window

ti
ti+1
ti+2

Time
Landmark Time Window

ti
ti+1
ti+2

Time
Damped Time Window

ti
ti+1
ti+2

Time
Adapted Time Window

ti
ti+1
ti+2

Time
Tilted Time Window

ti
ti+1
ti+2

Figure 5. Different ways to segment the input data. The more concentrated the blue, the more are the
observations considered in retraining the model.

Several works discuss the different types of time windows. Commonly, sliding,
damped, and landmark time windows are distinguished [49,88]. In [89,107] damped time
windows are denoted fading time windows; however, they refer to the same concepts.

In sliding time windows, the specific window size is fixed so that the algorithm dis-
cards the oldest observation from consideration for each new incoming observation. Thus,
the same number of observations is always used to retrain the model. Similarly, the land-
mark time window keeps a steady number of observations, but the data is portioned into
disjoint chunks. Whenever a landmark is reached, all observations previously considered
are released. Landmarks can be defined differently, e.g., a threshold for the maximum
number of observations or a certain amount of time passed. This approach should not be
used when it is known a priori that the data stream contains drifts with long periods of
stability in between [5]. In such cases, no window size can capture the distribution shift.
An alternative is the damped time window. Unlike the approaches discussed, a function is
used to decay older observations over time. In literature, usually exponential functions are
used to weight observations and generate the decay [108].

Additionally, refs. [89,107,109] present a tilted time window as a variant of the damped
time window. It applies different levels of granularity to the data records according to their
recency. Thus, old data points are summarized in larger, less important windows, while
new observations are considered in smaller, heavier-weighted windows.

Similarly, ref. [5] introduce the adapted time window as a variant of the landmark
time window. Here, the window size is not fixed but can be adjusted dynamically. In prac-

Appl. Sci. 2022, 12, 9094 15 of 43

tice, adapted time windows may lead to significant data chunk sizes and computational
overhead. For example, the Adaptive Windowing algorithm (ADWIN) flushes the consid-
ered observations every time a concept drift is detected. Thus, it automatically selects the
appropriate window size. The user specifies a sufficiently long time, within ADWIN auto-
matically generates all possible windows and compares them by inspecting the mean value
difference [110]. An optimal cut is found when the mean difference exceeds a predefined
tolerance level that the user can set. ADWIN forms the basis for many automated update
algorithms through its adaptive windows’ capability [36].

In the works of [88,111], general advantages and disadvantages of windowing are dis-
cussed. Refs. [5,88,112] mention the processing of each incoming observation incrementally
as it arrives as a possible way to process incoming data. Ref. [111] points out that by using
the windows approach instead of incrementally adding new observations, the expiration
of the old observations has to be controlled. Setting the correct window size is crucial for
drift detection for all these approaches. However, some types of drifts cannot be detected
by some window types. Using different input segmentation methods in parallel [111]
is reasonable.

Note here that the denomination of window types are those most commonly used
in the literature. However, for different types of stream classification tasks, they can vary.
For example, ref. [106] described window types for activity detection with sensors that
incorporate the same approaches discussed here but are called differently. E.g., sliding
time windows are called time-based windows, while landmark time windows are called
sensor-based windows [106].

4.3. Labeling

Another essential step of data processing, which is not part of the actual classification
procedure, is labeling data points. While in traditional classification scenarios, a certain
amount of data is often available as ground truth initially, the stream classification process
thrives on new labeled data points. Two problems go along with this: on the one hand,
labeled data are rare (as in the traditional setting), and on the other hand, it can often arrive
with an inevitable delay (or never) [113]. An example is the problem of predicting a plane’s
delay at its departure. The true label—the plane’s actual delay—is available hours after the
model predicted it. For implementing a stream classification algorithm, labels are often
lagging and have to be generated occasionally, either manually or automatically.

An essential strategy in this context is active learning, by which meaningful data
points are labeled and then used for training [114]. This approach is suitable for stream data
scenarios, as it focuses on only a limited number of instances. Potentially significant data
points can be extracted by using instance selection (see Section 4) approaches. Commonly,
labeling of new data points is triggered once a concept drift has been detected, and the
labeling itself is conducted by experts or in an automated fashion.

However, in practice, instance selection for (manual) data labeling is a very costly and
almost infeasible process. Therefore, automated generation of labeled data is currently
the focus of research. One approach for automated labeling is semi-supervised learning,
which conceptually ranges between supervised and unsupervised learning [41]. Typically,
those algorithms attempt to improve performance in one of these two tasks. Regarding
classification, semi-supervised techniques can be distinguished between creating classifica-
tion models (see Section 5.2) and labeling strategies of new data points, which typically
require clustering of instances [41]. Here, the idea is that unlabeled data can be used to
construct a more accurate classifier under certain assumptions about the data distribution.
In general, labeled data is enriched by originally unlabeled records, assuming that data
points within a cluster belong to the same class. A prominent example of automated
labeling of new instances from a few labeled data is self-organizing maps (also known as
Kohonen maps) [115].

Next to the labeling problem itself, another highly discussed topic is the problem
of imbalanced data and label sparsity. This topic is often considered in preprocessing

Appl. Sci. 2022, 12, 9094 16 of 43

literature [91]. In evolving data streams, classes may be highly unbalanced. As in offline
scenarios, methods of under-or oversampling are considered to balance data and enhance
prediction performance [91]. An influential work in the field of imbalanced data is the
Synthetic Minority Oversampling Technique (SMOTE) proposed by [116]. The algorithm
chooses a random example of the minority class and finds the k nearest neighbors. Then,
a new data point is created by randomly choosing one of the neighbors and then randomly
specifying a point between the latter and the chosen example. Numerous advancements
of the initial algorithm exist, which can deal with large amounts of data as standard in
the stream scenario [91]. Nevertheless, the problem of imbalanced data is one of the most
prominent challenges in stream data analysis [40,91,117,118].

5. Stream Classification Algorithms and Architectures

There are plenty of options for choosing the actual classification algorithm as the
core of the classification pipeline (Figure 1). The algorithm needs to handle (potentially
unbounded) data streams, where instances might arrive at high speed and can not be stored
completely, and predictions need to be made in time [1]. In addition to the stream data-
specific requirements, there may be other specific demands on the algorithms. For example,
multi-label or multi-class algorithms may be required depending on the scenario. Based on
the various application areas (see Section 3), scientists have been engaged in developing and
advancing individual stream classification approaches over the years. Moreover, a large
number of reviews, as well as benchmarking papers, exist. Based on this literature, we
give an overview of stream classification algorithms together with unique features and
challenges. Moreover, we summarize the review and benchmarking studies by indicating
which algorithm types and structures they cover (see Table 5 and Figure 6 for the structure
of the section).

Setup
Tree-based

Algorithm

Architecture

Neural Networks based

Single

Ensemble

Neighborhood-based

Frequency-based

Rule-based

SVM

Figure 6. Overview of classification algorithms. Depending on the data sources and initial processing,
the choice of a suitable algorithm has to made.

5.1. Architecture

Commonly, the classifiers are divided regarding their architecture into single classifiers,
or classifier structures, called ensembles [1,89]. To deal with the large amounts of data
and the changing data under certain circumstances, combining several models has proven
beneficial rather than performing the classification based on a single classification model.
A classifier ensemble is a collection of several weak learners, i.e., simple algorithms, whose
accuracy is at least slightly above chance. The main focus is on algorithm efficiency, and the
basic idea is that combining several weak learners, which only work on a few features,
leads to better global classification accuracy. Research on the composition of the ensembles
and the combination or weighting of the weak learners is controversial. In their work,
Ref. [5] propose different aspects, which should be considered when creating an ensemble.

The combination of classifiers describes how the individual classifiers interact with
each other. Several approaches and voting strategies exist for weak learners [5]. A flat

Appl. Sci. 2022, 12, 9094 17 of 43

architecture (also found in literature as bagging strategy) describes a setting where weak
learners are trained in parallel on different data points and/or features subsets, and their
classification results are combined, e.g., via majority votes. Thereby, the most frequently
predicted class is assigned to the respective instance. Alternatively, classification can be
based on a single selected ensemble classifier or by weighting the different models [119].

Another possibility is to use the results of the weak learner to train a meta learner
(called stacking) [5]. Instances formed by the predictions of the weak learners are denoted
as meta-dataset. Together with the initial labels of the training data, a meta-classifier can be
induced, which is trained on predictions of weak learners as features. This model is then
used to predict the label of a new observation.

Table 5. Overview of relevant stream classification algorithm review and benchmarking studies.

Ensemble Tree Neural Neighbor Rule Frequency SVM Benchmark

[120] X X X X
[121] X X X X X X
[111] X X X X X
[89] X X X X X X X
[122] X X X X X
[5] X
[37] X X X X
[1] X X X X
[84] X
[123] X X X X X
[124] X X
[33] X X X X
[125] X
[13] X X X X X
[88] X X X X X
[7] X X X X
[107] X X

Another important configuration aspect of classifier ensemble approaches is classifier
diversity [5]. On the one hand, it is possible to train the individual classifiers on different
features (vertical partitioning) or data points (horizontal partitioning). On the other hand,
different hyperparameters of classifiers or even different base classifiers on the whole
training data can be used. With all these possibilities, the diversity of ensembles is a
multifaceted topic. Many studies, strategies, and metrics exist to achieve and monitor the
appropriate level of diversity for ensembles [5]. Unlike offline, maintaining diversity and
performance in the online setting are considerably more complex. This is especially the
case for changing data streams (see Section 6 for more details of changes in data streams).
Ref. [84] gives a broad overview of ensemble algorithms in stream classification. They
elaborate on the ensemble diversity and combination of base learners. Further, they give
an overview of the suitability of algorithms in the case of imbalanced data, novelty class
detection, active and semi-supervised learning, and high-dimensional data. The authors
define future research directions as handling high dimensional data, the combination of
multiple streams, and self-tuning ensembles. However, more work could be conducted to
analyze the type of drift and work with imbalanced data and delayed label information.
Ref. [126] analyze the impact of changes in the data stream on diversity measures in
streaming scenarios. The analyses are based on the MOA framework and the artificial
and real-world datasets provided in the MOA framework. This study demonstrates that
diversity metrics can be used for stream classification. Further, the monitoring of ensemble
diversity over time can be used to elaborate the type of concept drift (see Section 6).

5.2. Algorithms

Various algorithms can be found in the literature suitable for a stream classifica-
tion problem. In line with the review papers in the field, the most common solutions
are based on the ideas of trees, neural networks-, frequency-, and neighborhood-based
approaches [13,88]. In addition, Support Vector Machines and rule-based algorithms are fre-

Appl. Sci. 2022, 12, 9094 18 of 43

quently mentioned, as they can be adapted to the stream setting [89,111]. In the following,
we will shortly give an overview of the most common techniques (see Figure 7).

(b) Neural Networks(a) Trees (c) Neighborhood-Based

(e) Frequency-Based(d) Rule-Based (f) Support Vector Machines
x

Figure 7. Overview of the most common algorithm types used in the reviewed literature in a stream
classification scenario. The point shapes in (c) and (f) represent data of different classes.

5.2.1. Trees

Tree-based algorithms (see Figure 7a) are suitable for stream classification scenarios
because of their low computational costs, their ability to deal with redundant features, and
their robustness in terms of noisy data [89]. Hoeffding Trees, as a particular class of decision
trees, are one of the most fundamental algorithms in the field [127]. The underlying concept
is a very fast decision tree (VFDT) algorithm. With this algorithm, it is not necessary to
consider an exhaustive training database but a sufficiently large subset at each splitting
point of the tree. Moreover, instances are not stored as such but with the help of counters.
Counters enumerate how many instances are classified according to a particular tree branch.
Thus, the tree is generated incompletely but with a sufficiently large amount of information.
By this, the algorithm perfectly fits the stream scenario, where training data might be
incomplete at the beginning, not all instances can be stored, and predictions need to be
made in time. For example, within our search, we found the application of Hoeffding trees
in intrusion detection [128].

For experimental studies, the SAMOA framework can be used to parallelize the
vertical Hoeffding Tree (VHT) to cope with the high data volumes in stream classification
scenarios [129]. VHT splits observations into feature subsets (vertical parallelism) of an
instance. The algorithm treats all feature subsets as an independent. Thus, computations
can be conducted in parallel. Ref. [124] evaluate ensemble methods on MOA real-world
datasets. Specifically, they compared ensembles, which are trained online and window-
based. They conclude that the adaptive window online ensemble (AWOE), introduced
by [130], which operates in a hybrid fashion and includes an internal change detector,
produced the best results in terms of accuracy, memory usage, and processing time.

Trees in terms of ensemble classifiers are called forests. The best-known variant—random
forests—consists of several randomly generated decision trees. Each tree is trained on a
random sample of the data and a subset of features (bagging). The classification results of
the trees are merged into a prediction, e.g., via a majority vote, within the combination step.

To cope with the circumstances of the streaming scenario, the Adaptive Random
Forest algorithm (ARF) includes a dynamic update method to react to possible changes
in the data stream [131]. Each tree is provided with a change detection functionality so
that new and more suitable trees can be built in the background at any time. In a large-
scale study, the authors show the performance of ARF algorithms on different synthetic
and real-world datasets with concept drift. For their experiments, they use the MOA
framework. The evaluation criteria within their experiments are classification accuracy,
CPU Time, and Memory usage. The authors show that adaptive random forests perform
exceptionally well on real-world data sets with label delay. Further, the algorithm is suitable
for settings with many features, e.g., in a Natural Language Processing setting such as

Appl. Sci. 2022, 12, 9094 19 of 43

spam email detection. Here, the authors demonstrate good results even when using a small
number of decision trees. Additionally, within the ARF approach, it is possible to train the
trees in parallel without harming the model’s classification performance. The algorithm
is especially suitable for classification problems, where a subset of features is sufficient
to create a decisive explanatory model. A drawback of tree-based classification models is
that rebuilding, e.g., changing data, is a time-consuming task [121]. Further, trees tend to
over-fit in case they create a high number of branches with only small leafs.

5.2.2. Neural Network

Due to their generalizability and ability to solve non-linear and dynamic decision
problems, neural network-based methods (see Figure 7b) are standard in the field [89].
One of the best-known neural network-based methods in the field of stream classification
is the extreme learning machine (ELM) [125]. The classical ELM is a learning algorithm con-
ducted on feed-forward neural network(s) with a single hidden layer [132]. The algorithm
provides high generalization performance and is very efficient because it does not require
gradient-based back-propagation to work. The hidden nodes, as well as their weights and
biases, are chosen randomly. Only the weights of the hidden nodes to the output layer
must be learned by a least squares method.

Since the invention of the ELM in 2004, it has been used and further developed in many
applications. In their review paper, ref. [125] describe the development of the algorithm
and show the different works and modifications that have emerged around the basic idea of
this efficient and straightforward approach. While the original ELM was designed for batch
learning, the Online Sequential ELM (OS-ELM) algorithm can be trained online on single
new data points or flexible batch sizes [133]. Based on the OS-ELM, many extensions and
solutions have been developed. The individual works deal with the problems of concept
drift, unbalanced distribution of classes, and uncertainty of data [125].

Of course, using ELM classifiers as base learners in an ensemble setting is also con-
ceivable [134]. Ref. [134] use the result of an ensemble of ELM models with randomly
assigned activation functions to apply a weighted voting strategy for classifying new obser-
vations. For a broad overview of the individual approaches and their interrelationships,
we recommend the work of [125].

Next to the ELM, other neural network-based approaches were proposed in the litera-
ture. Ref. [135] shows a wide-ranging benchmarking study for neural network algorithms
on stream data. Concretely, they compare a basic Multi-Layer Perceptron (MLP) model with
a Long-Short Term Memory network (LSTM), a Convolutional Neural Network (CNN),
and a Temporal Convolutional Network (TCN). The models are evaluated in terms of
accuracy and computational efficiency on various UCI repository datasets, including image,
sensor, and motion datasets. The authors conclude that CNNs reach the best accuracy
by allowing fast processing of the incoming data stream. LSTM and TCN lag behind the
capabilities in terms of higher processing time and worse performance.

CNNs are broadly used in high-dimensional data, as in image and video analysis. Intel-
ligent filtering and reduction of the input data make it possible to classify images or detect
objects in the images efficiently. Application scenarios are, e.g., gesture recognition proce-
dures, surveillance applications, or the automatic analysis of ultrasound [15,27,136,137].

More complex neural networks are at a disadvantage in the stream setting because
most methods cannot make predictions in real-time [88]. Nevertheless, researchers thrive
on using state-of-the-art methods’ advantages on data streams. A specific example is a
generative adversarial network (GAN) proposal by [138]. The deep learning architecture
can regenerate training data and overcome data storing limitations. Due to the high com-
putational costs of training and their need for extensive parameter tuning, deep learning
methods are not commonly approved in evolving data streams [88]. Next to their high com-
plexity, neural network-based methods are often criticized as black boxes, as the decisions
are not interpretable [89].

Appl. Sci. 2022, 12, 9094 20 of 43

5.2.3. Neighborhood Based

Neighborhood-based methods (see Figure 7c) are frequently used in the stream clas-
sification setting. As one of the most common approaches, the k-nearest Neighbor (kNN)
algorithm predicts labels of new data records by selecting the class label of the closest
training instance [121]. For k > 1, the class label is defined as the majority of all k nearest
neighbors of the instance.

Nearest neighbor classifiers can be naturally transformed to the incremental setting by
selecting a limited subset of the most “useful” examples (also called reservoir sampling
or lazy learning [1,121]. The sampling process can be biased or unbiased [111]. In biased
methods, the time component of data streams is considered. Thus, more recent data points
are weighted higher than earlier data records, especially suited for streams with concept
drifts. Although the algorithm is intuitive, determining the appropriate k, especially when
considering evolving data streams, is not trivial. The ANNCAD algorithm is one of the
earliest kNN algorithms designed explicitly for data streams [139]. Here, an adaptive choice
of the number of k nearest neighbors is possible.

Similar to traditional nearest neighbor approaches, classification can also be conducted
based on clusters. Original training data is represented as, e.g., the centroid of supervised
microclusters. Thus, the data, as well as computational costs, are reduced [111]. A class
consists of one or more micro-clusters, and predictions are derived by measuring the
distance of newly arriving instances to the centroids of clusters. Classification of instances
based on micro-clusters is also reported by [120] as an on-demand classification. Another
common technique, aligned with the one above, is representing data points as density
regions in a grid [140,141]. The idea of grid-based clusters is that only counters of the
grid regions need to be stored instead of complete observations. Ref. [142] propose an
ensemble of k-means classifiers—called Semi-Supervised Adaptive Novel Class Detection
and Classification (SAND). Each classifier is trained on a different batch of data. The data of
each batch is partially labeled and can be determined dynamically. New labeled instances
are gained using records with a high classification confidence score to handle concept
drifts. Thus, the classifier is updated. Further, a dense area of outliers is interpreted as a
new class. Within their study, the authors compared their algorithms with, e.g., Adaptive
Hoeffding Trees in terms of its classification performance and ECSMiner, (ECSMiner is a
novel class detection algorithm, proposed by [143].) for the novel class detection component.
The performance of SAND in both tasks is at least comparable to the considered algorithms,
with only a small number of labels.

The challenges of neighborhood-based approaches are the reduction of processing
time, the development of meaningful cluster splitting methods, and the curse of dimen-
sionality [88].

5.2.4. Rule-Based

An intuitive classification approach are rule-based systems [37,120,122]. The idea is that
combinations of different features indicate a class label (see Figure 7d). For instance, specific
intervals of numerical attributes are associated with a respective class. Thus, traditional
rule-based methods cannot be used in stream scenarios with evolving feature spaces or
other changes in the data. Exemplary algorithms extending the idea of rule-based systems
to the streaming scenario are, e.g., STAGGER, FLORA, and AQ-PM [121]. STAGGER
consists of two stages to handle shifts in the distribution: in the first step, the weights of
the features, which lead to the applied rules, are adjusted. Second, new features are added
to existing rules [53]. FLORA (as well as the extension FLORA3) is based on the idea of
temporal windowing [144]. A collection of temporal contexts can be disabled or enabled
over time, e.g., to handle seasonal drifts. The AQ-PM approach keeps only the training
data close to the rules’ decision boundaries [145]. Thus, AQ-PM can learn new concepts by
forgetting older examples. However, the major drawbacks of rule-based systems are their
inflexibility and low learning speed [121].

Appl. Sci. 2022, 12, 9094 21 of 43

5.2.5. Frequency-Based

The Naïve Bayes algorithm (NB) is an incremental algorithm, which is by nature
able to handle data streams [121]. Decisions are made based on a frequency scheme (see
Figure 7e). Concretely, NB is based on the Bayes Theorem, which assumes that the explana-
tory variables are independent conditionally of the target variable [146]. Thus, Naïve Bayes
works intrinsically incremental by updating relevant entries in its probability table and
deriving predictions based on posterior probabilities whenever a new training instance
arrives. The algorithm is well-known for its simplicity and can predict class memberships
with low computational costs. The traditional algorithm deals with a discretized feature
space. However, numerical feature spaces occur often, e.g., in sensor data. Bayesian clas-
sification can be combined with an initial discretization step as preprocessing, e.g., via
the PiD method [102]. An option of using the algorithm on continuous data arises from
the Gaussian Bayes models [123]. Nevertheless, the two main drawbacks of Bayes clas-
sifiers are the independence assumption of the features, such as the inability to handle
multimodal distributions.

5.2.6. Support Vector Machines

The Support Vector Machine (SVM) [89] is a well-known offline classification algorithm.
SVMs are based on finding the maximum marginal hyperplane that separates training
data of different classes (see Figure 7f). Finding the hyperplane is a convex optimization
problem, which can be solved using the Lagrangian formulation. Using SVM algorithms in
big data settings comes with complex calculations, making the traditional SVM unsuitable
for the stream scenario. An approach that adapts the idea of the SVM algorithm to the
stream classification problem is the Core Vector Machine (CVM) [147]. Here, a minimum
enclosing hypersphere is used, which represents the divisive data records. Calculations are
then based on the representative hypersphere instead of the original data records, making
calculations more efficient. This idea forms the basis for other SVM-based algorithms such
as StreamSVM [148]. Here, the CVM is extended so that one pass over the data instances is
sufficient. The main drawback of the SVM is the low learning and prediction speed, such
as the inability to react to changes in the data stream. Further, SVM models are extremely
difficult to interpret [121]. Further, the performance of SVM-based classification models
depends on a proper parametrization, e.g., choosing a suitable Kernel [89].

5.3. Specific Classification Problems

Although classification scenarios are traditionally often introduced as binary decision
problems, we frequently encounter more than two classes and/or labels, both in practice
and in theoretical application scenarios [40]. More precisely, a distinction has to be made
between multi-class and multi-label problems.

In the first case, an observation ~x ∈ X is classified into an l-dimensional space
Y = {C1, . . . , Cl} of l ≥ 3 classes. A common way to deal with multi-class problems is the
one-vs-all principle, which is based on l binary classification models [149] (one model per
class). Each of them is generated using labeled instances of the respective class of interest
on the one hand (1) and the instances of all remaining classes on the other (0). It should be
noted that nowadays, various classification algorithms—e.g., neighborhood-based methods,
or trees—can deal with more than two classes by nature.

In the case of multi-label problems, instances will not only be assigned one but
several classes simultaneously. That is, the feature vector of the i-th observation remains a
p-dimensional vector ~xi = (xi1, . . . , xip) ∈ X . However, extending the previous notation,
the corresponding outcome will no longer be a single class label yi ∈ Y , but instead a
k-dimensional vector ~yi = (yi1, . . . , yik) ∈ (Y1 × . . .× Yk), where each element yij ∈ Yj,
j = 1, . . . , k, maps to its own finite set Yj of lj class labels.

The following approaches are common when dealing with Multi-Label problems:
First, multi-label problems can be separated into several binary problems (called binary
relevance), meta labels of label combinations (called label power sets), and a set of label

Appl. Sci. 2022, 12, 9094 22 of 43

pairs (called pairwise). These approaches are referred to as problem transformation. The ap-
propriate strategy depends on the data basis. Binary relevance is an easy-to-understand
method, which is often implemented in the context of ensemble models. A disadvantage
of this method is that no label correlations are considered here, i.e., each label is assigned
independent of all other labels. On the other hand, label correlations are considered within
the label powerset approach. Here, however, the focus is on essential interactions to coun-
teract the sparsity of data points and achieve a meaningful classification, e.g., by selecting
important label correlations [150]. The pairwise approach is rarely used in online settings
due to its high computational complexity in large-scale multi-label problems.

Another possibility for dealing with non-binary problems is extending the classifica-
tion algorithms (such as decision trees). One example is the extension of the Hoeffding
Tree algorithm [151]. Here, leaf nodes exist for every necessary label combination in the
label powerset.

For a comprehensive overview of multi-label stream classification, we refer to the
survey paper by [40]. They discuss a wide range of multi-label stream classification
algorithms, their ability to adapt to changes in the data stream, and standard multi-label
datasets. As an evaluation criterion, the authors analyzed the algorithm performance in
terms of the F1 metric and the running time. By benchmarking multiple algorithms on
different real-world and synthetic data sets, they give a good overview of the strengths
and weaknesses of the individual approaches. The authors conclude that a Multi-Label
ensemble with Adaptive Windowing (MLAW), proposed by, shows the best classification
performance and efficiency results. The authors conclude that there is room for further
research on handling and detecting different types of concept drift, imbalanced classes,
and temporal dependencies of labels.

6. Classifier Maintenance

Using a stream classifier is always aligned with its maintenance. The stream classi-
fication model’s (hyper-)parameters might have to be adjusted in case of changing data
distributions, which are checked by evaluating current classification performance. Thus,
maintenance includes the reliable detection of changes (drift detection) and adequate test-
ing and updating of the existing classification model. An overview of the discussed topics
is displayed in Figure 8.

6.1. Concept Drift

The topic of changes in streaming data is an integral part of stream classification
applications. It should be noted that in addition to the term concept drift, alternative
formulations can also be found in the literature. Other terms are, e.g., concept change,
distribution, or data shift [36].

Different types of concept drift can be distinguished. Due to the many strands of
research, various terminologies have developed over the years. Table 6 lists the work cited
in drift detection and the distinctions of concept drifts. Combining the findings within
those works, four different concept drift types can be differentiated. Within Figure 9, we
present a graphical comparison of them. Within a sudden (also known as abrupt) concept
drift, the data distribution changes suddenly at a certain point in time. In other words,
the new concept replaces the old one completely. Whereas during an incremental drift,
the data distribution changes progressively over a period of time. In contrast to the sudden
drift, the old concept vanishes smoothly within an incremental drift. A sudden drift occurs,
for example, when a new sensor type is included in an IoT application. An incremental one
is comparable to a setting where a sensor becomes slightly more and more inaccurate over
time [4]. Some researchers also mention the category of gradual concept drift, where first a
new concept appears within the old one for some periods in time [4,152]. At some point,
the new concept replaces the old one completely. Please note that the terms sudden/abrupt
and gradual are sometimes related to the speed or duration of a drift [153].

Appl. Sci. 2022, 12, 9094 23 of 43

Sudden/Abrupt

Reoccuring

Type

Subject

Detection

Gradual

Incremental

Virtual

Real

Error Driven

Distribution Based

Hypothesis Tests

Update Mechanisms

Updating Mode

Adaption Methods

Retraining

Incremental

Blind

Informed

Concept Drift

Distance Based

Reoccurring

Evaluation

Ensemble Evaluation

Test Procedure

Holdout

Prequential

Controlled Permutations

Metrics

Confusion Matrix

Runtime

Kappa Statistics

Statistical Tests
Parametric

Non-Parametric

Drift Detection Evaluation

Maintenance

Novel Classes

Figure 8. Stream classification model maintenance consits of several building blocks. After an initial
setup of the algorithm, the model is maintained, while predictions are made simultaneously.

D
is
tri
bu
tio
n

Time

D
is
tri
bu
tio
n

Time

D
is
tri
bu
tio
n

Time

D
is
tri
bu
tio
n

Time
Abrupt Incremental Gradual Reoccuring

Figure 9. Different types of concept drifts that display possible data distribution changes over
time (based on [4,36]).

So-called reoccurring (or seasonal) concept drifts, follow a periodic pattern, where the
old and the new concept alternate [4,36].

Researchers also differentiate regarding the subject of the respective drift [153]. The first
category is the class changes, called class drift, prior probability shift, or more prominent
real drift. Here, Class probabilities P(Y|X) change over time. The second category is
called covariate drift, or virtual concept drift, where the distribution of features P(X) shifts.
Of course, a combination of both, where the distribution of features and classes occur, is
possible [36].

A particular case of drift is the appearance of novel classes [153]. Within the scenario
of the novel or emerging classes, a new and previously unknown class is added to the
stream scenario. Sometimes, this is also denoted as a concept evolution [154]. Some works
make other distinctions in the context of concept drifts. These, e.g., cover the severity,
predictability, and frequency of changes in the data stream [4]. We recommend the work
of [153] for the interested reader. The authors discuss the different terminologies extensively
and relate them to each other in a broad taxonomy.

6.2. Drift Detection Algorithms

Since concept drifts can occur in various forms, numerous detection approaches exist.
Concept drift detectors are either part of the actual classification algorithm itself or run
parallel to the classification task and send an alarm to the actual classifier [1]. Summarizing
works give an overview of algorithms for concept drift detection [4,36,85,112,118,155–157].
Depending on the specific work, taxonomies and terms, as well as the focus of concept drift

Appl. Sci. 2022, 12, 9094 24 of 43

detection algorithms, differ. Table 6 gives a quick overview of the covered aspects of the
works. In the following, an overview of the most prominent techniques mentioned in most
of the examined papers is given.

Table 6. Overview of summarizing drift detection work and used terminologies of drift types, as well
as detection algorithm categories.

Work Drift Types Drift Detection Catgeories

[4] Sudden/abrupt, incremental Gradual,
reoccurring

Sequential analysis, control charts,
Distribution, contextual

[153] Real, virtual, abrupt, incremental, Gradual,
reoccurring, cyclical, full, sub

[154] Sudden, incremental, gradual, Recurring,
concept evolution

Offline, online, number of classifiers,
Supervised, unsupervised

[155] Statistical test, error, distribution
[36] Sudden,gradual, Incremental, reoccurring Error, distribution, multiple hypothesis

[112] Real, virtual, class prior, Abrupt, gradual, local,
Global, cyclic, acyclic, Predictable, unpredictable Sequential, window-based

[118] Sudden,gradual, Incremental, reoccurring

[85] Real, virtual Statistical methods, window-based,
Block-based ensembles, incremental

[156] Local, global Unsupervised batch, unsupervised online

[34] Abrupt, gradual, Incremental, real, virtual Distribution, sequential analysis, Statistical
process control

6.2.1. Error Driven

According to [36], most methods are based on the misclassification error rates of
the actual classification algorithm. If the error rate increases, the learned algorithmic
model no longer satisfyingly fits the data. One of the first error-based methods is the drift
detection method (DDM) [47]. (Please note, that [85] categorizes DDM related methods
as statistical-based techniques.) The error rates of the classification models are compared
based on landmark windows as soon as new labeled data are available. If the error increases
significantly, the method triggers the update of the classification model.

Over the years, further developments have been made based on DDM. The extensions
address different adjusting screws of the algorithm [36]. For instance, the Early drift detection
method (EDDM) monitors the distance between correctly classified instances in addition to
the error rate in order to detect changes already at the beginning of a drift [158]. However,
most of the algorithms listed in [36] and the methods discussed here can only detect the
point at which time drift occurs. Please note that, e.g., in [85], the DDM approach is listed
under statistical methods-based drift detection.

To detect the critical region of the substantial change in the distribution, an extension
of the algorithm based on the Hoeffdings Inequality (HDDM) can be used [159]. Manual
specification of window sizes is naturally error-prone. The fuzzy window DDM (FWDDM)
uses a fuzzy time window instead of the rigid one to address gradual drifts [160]. Also well-
known is the Adaptive Windowing (ADWIN) method proposed by [110] (see Section 4.2).
In the summarizing work of [85], the ADWIN algorithm is categorized as a window-based
drift detection.

6.2.2. Distribution Based

The second-largest class of drift detection methods is distribution based [36], i.e., the
distribution of newly arriving instances is compared to the historical distribution by a
suitable distance metric. For comparing two distributions, well-known and often used
metrics are, e.g., the Kullback-Leibler or the Jensen-Shannon divergence. An example of
the first is the Information Theoretic Approach (ITA). Historical and new data records are
divided into bins using a k-dimensional tree, and then the frequencies within the bins are
compared using the distance metric [161]. Large deviations indicate a change in the data
stream. The data-driven approach pursues the idea of detecting drifts directly at the source
and does not suffer from model intrinsic errors. A drawback of comparing large datasets is

Appl. Sci. 2022, 12, 9094 25 of 43

the high computational complexity [36]. Nevertheless, these algorithms are generally also
capable of detecting the severity of a drift. Similar to error-driven approaches, two samples,
namely the historical and the new dataset, must be carefully defined. Typically, this is
implemented using two sliding windows. Again, choosing the right size is, of course,
decisive. For example, recurring concepts must be recognizable in the data and not be
ignored by the wrong choice of window size.

6.2.3. Statistical Test Based

Within concept drift detection literature, authors often refer to statistical test-based
approaches [36,85,155,157]. Please note that the cited summarizing papers of this section
differ in their taxonomies. Within some works, the methods listed previously also fall
under statistical methods. For example, ref. [4] refer to statistical tests, which compare
two windows of a data stream (see Distribution Based). Ref. [157] count statistical tests as
subclasses of distribution and performance (or error)-based approaches. Ref. [85] states
that numerous drift detection methods are based on Sequential Probability Ratio Tests.
The idea of tests from that category is that if a distribution shifts, then the probability
of observing elements of this new Distribution should be higher than the probability of
observing elements of the “old” Distribution. An influential approach, following this idea,
is the cumulative sum (CUSUM) test [36,85,155]. CUSUM, first proposed by [162], raises the
alarm when the mean of the input data—e.g., the prediction error of the classification model
(as input data of the CUSUM drift detection method researchers propose the residuals
of the Kalman filter (see [36,85,155]))—is significantly different from a threshold value.
Ref. [36] refer to multiple hypothesis testing, where parallel and hierarchical testing can
be distinguished. In parallel hypothesis testing, several statistical tests are applied simul-
taneously to the input data stream. The algorithm Linear Four Rate drift detection (LFR)
proposed by Heng and Abraham tracks changes in the True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) rate in parallel [163]. For each error
rate, a statistical test is applied. The assumption is that error rates remain stable within a
reference interval until a change occurs. Considering all kinds of error rates, the method
also applies to imbalanced data sets. Additionally, different errors can be weighted higher
by corresponding reference intervals.

Hierarchical testing usually follows a two-step approach [36]. First, drifts are de-
tected by the detection layer, and another hypothesis test is applied as a validation layer.
The algorithms in the field differ in terms of the used test statistics and detection strategies.
Returning to the idea of LFR, hierarchical Linear Four Rate (HLFR) is a recently proposed
hierarchical drift detection algorithm. In the first step, the drift detection algorithm LFR
is used as the detection layer. When a potential drift is detected, a zero-one loss test (the
Zero One loss test gives the proportion of misclassified instances, where the loss of zero
indicates no prediction errors) is performed on training data splits to confirm (or deny)
the validity of the suspected drift. Therefore, sequentially ordered training data are split
into batches. The idea is that the concept drift is confirmed when the prediction loss on the
sequentially ordered training data batches deviates significantly from that of the shuffled.
If the concept drift is confirmed, the upgrade of the classification model is triggered.

6.2.4. Semi- and Unsupervised

Especially for novel class detection, we find several clustering-based algorithms.
Within the OLINDA method, a k-means algorithm is executed as soon as incoming data
points cannot be assigned to one of the existing clusters of the classes [164]. The produced
clusters are then verified. A valid cluster must be cohesive, meaning that instances must
meet a similarity threshold. Further, the number of instances within a cluster must exceed
a minimum number. Depending on the location of the new cluster, an existing class (macro
level) is extended by this cluster (micro-level), or a concept drift is recognized. The MINAS
algorithm works similarly. Here, a cluster is connected to an existing class’s cluster if the
distance of the centroids does not exceed a predefined threshold [165].

Appl. Sci. 2022, 12, 9094 26 of 43

Accordingly, a grid-based clustering approach can handle changes in the data stream
and emerging classes [166]. The Evolving Micro Clusters (EMC) algorithm determines class
memberships by grid-based evolving microclusters. For this method, a grid is applied over
the entire data search space. Each observation is assigned to a cell within the grid. New
classes can be detected by measuring the density of data points in the grid. Accordingly,
grid density-based clustering approaches can be used to detect changes in the input data
stream [140]. The grid density information is used to sample the training instances of the
actual classifier. When a grid reaches a predefined density threshold, the grid is considered
for training. Areas that do not reach this threshold indicate changes in the stream or outliers.
Depending on the individual situation, clusters are re-formed, split, or combined when a
new dense grid emerges. Following the same idea, the SAND classification algorithm also
uses the grid’s density to detect new classes [142]. Additionally, the algorithm contains a
drift detection method based on the confidence values of the classification algorithm.

6.2.5. Reoccurring Concept Detection

A unique form of concept drift is that of reoccurring concepts. For example, one can
think of a measurement series subject to seasonal variations. In this case, standard methods
would forget essential information, which may become necessary again later. Therefore,
particular interest is given to detecting reoccurring concepts in data streams. The aim is
to keep models which have become unusable in reserve for reuse at a later point in time.
Conventional for this scenario is the use of classifier ensembles. For example, the Concept
Profiling Framework (CPF) uses a collection of different classification models [167]. A drift
detection mechanism triggers the archiving of new labeled instances when a threshold
for the classification error is reached. Based on this archived set, all existing classifiers
are tested. If no suitable model is found, a new model is trained. Likewise, the similarity
of the classifiers is evaluated so that the collection remains diverse, and the new model
replaces the most previously similar classifier. In order to prevent the erroneous deletion
of a classifier, in the extended version, both models initially remain. Only if it could
be ensured over an extended period that both represent the same concept is the old
model discarded [168]. While Anderson et al. based the drift detection on the model
error, the detection of reoccurring concepts could also be conducted by comparing data
distributions in the stream (see data-based methods).

Promising research directions are the handling of imbalanced data [118], drift detection
in case of missing values [112], as well as the inclusion of temporal dependencies [155].
Ref. [36] states that drift detection methods should be enhanced in terms of their ability to
provide information about drift types and regions. Further, ref. [157] see potential in the
automated parameter tuning of drift detection and stream classification algorithms.

6.3. Update Mechanisms

A model update follows the evaluation and detection of a change in the data stream
to maintain classification accuracy. The following update strategies can be distinguished:
it can be differentiated between whether a single algorithm or an ensemble needs to be
updated [154]. While in the former case, the single algorithm is adapted along its usage,
the update of ensembles is often proceeded by introducing new and deleting old ensemble
members. Usually, updating is conducted after external feedback about the actual labels
has become available. Labeling is performed either by an expert or automatically, e.g., via
an active learning approach on a temporary recurring basis (see Section 4.3). Updating
stream classification models is a widely discussed topic. It needs to be timely and efficient
and should not hinder the actual use of the classification algorithm. Note here that the
data segmentation strategies discussed in Section 4.2 can also be used to determine the
point in time and the amount of data used for updating the model. The following sections
provide links to the different window types used in various updating modes if necessary
(for reference, see Section 4.2).

Appl. Sci. 2022, 12, 9094 27 of 43

6.3.1. Updating Mode

Generally, the learning of data stream models can be differentiated between the
incremental adaptation of the old, or the complete retraining of new models [4]. In the latter
case, new training instances must be collected over time. Like the typical batch learning
approach, the old model is discarded and succeeded by a new one, which is similar to
the landmark time window approach. Complete retraining is often conducted by models
adapted from the traditional batch setting.

In the incremental case, the labeled data points are fed into training one by one. Well-
known examples are the VFDT, where new examples are added and updated leaf statistics,
and the STAGGER algorithm [53,127].

The update itself can affect the complete model (called global replacement), or just a
part of the model (called local replacement) [4]. Whereas decision trees or decision rules
can be updated partially, other algorithms, like Naive Bayes, must be retrained as a whole.

6.3.2. Adaptation Methods

The adaptation of the model can be conducted in an informed, or blind manner. Note
here that these adaption methods are also called active or passive learning in other works,
e.g., by [1]. In the former case, the update happens after a triggering event. This event can
be, e.g., the deflection of a change detector or the excess of a threshold (e.g., model error).
In blind model adaptation, the update happens without any special trigger event on a
recurrent time basis. Incremental classification models are updated blindly by nature since
they evolve with data. Again, the VFDT is an exemplary algorithm. Without any strategy
to explicitly detect concept drift, the model adapts to the most recent data, e.g., compare
Section 4.2 for references on segmentation. It updates itself as soon as a new labeled
instance arrives and thus reacts to the current concept without triggers. In this case, it may
also make sense to degrade older data records with a suitable fading factor. The idea is to
weigh old labeled data points less over time in the training process. Informed (or active)
classification methods can be implemented by including a drift detection algorithm.

For more detailed information, several surveys or extensive studies present different
aspects of drift detection and update mechanisms in data streams [4,36,154]. The authors
structure groundwork algorithms based on their possibilities for drift detection and main-
tenance. In addition, they discuss various synthetic as well as real-world datasets [36].
Researchers interested in stream data with specific drift characteristics can find a compre-
hensive overview of relevant datasets in their study.

6.4. Evaluation

Stream classification is an adaptive learning approach. When the data distribution
changes, the model has to be adjusted to maintain a high model performance. Thus,
thoroughly monitoring, displaying, and interpreting performance measurements over time
is a primary concern. The kind of performance measure must be chosen regarding the goal
of the learning task and the dataset at hand. More specifically, the following four aspects
are discussed: (a) the procedure when and on which data basis the model is tested, (b) the
performance metrics used for this purpose, (c) the statistical test that can be conducted to
compare different performance measurements, (d) evaluation of ensembles, as well as (e),
how to evaluate concept drift detection algorithms.

6.4.1. Test Procedure

First of all, users must determine what portion of data they will use for training and
testing. In stream classification, it is assumed that the instances appear in fixed sequential
intervals and that the corresponding ground truth is directly available. However, standard
techniques of the offline classification setting, e.g., cross-validation, do not always meet the
requirements of the online setting since they would destroy the temporal order of data [4].
Thus, problem-tailored methods for the streaming scenario evolved.

Appl. Sci. 2022, 12, 9094 28 of 43

In many works, e.g., by [4,7,36,84,88,169] three different validation methods are dis-
cussed: holdout, prequential evaluation (also named test-then-train), and controlled per-
mutations. Within the holdout strategy, one data subset is selected for training, the rest
for testing. In the stream setting, the latter subset should represent the exact distribution
currently present in the data. Thus, it can only be applied in artificial settings when the
user can define (a) the occurrence of concept drifts and (b) the exact training and testing
subsets in advance [88].

Prequential schemata apply an interleaved test-then-train approach: each data record
is used to test model performance and afterward to (re-)train the algorithm. Thus, this
method maximizes the data’s usability. In contrast to holdout, the concept of drifts does
not have to be known in advance. However, it may produce biased results, since the data
stream is first used for testing and then for training. Controlled permutations overcome this
issue. This approach runs multiple test runs with randomized portions of the data stream.
Then, the portions are permuted in a sophisticated controlled way to preserve the local data
distribution. More precisely, observations initially close concerning time remain close after
a permutation. Accordingly, users who expect sudden concept drifts are recommended to
use this method [7].

Refs. [83,170], criticize that, in all of these approaches, immediate availability of the la-
bels is assumed. However, in real-world settings, a verification latency may occur. Ref. [170]
discusses the example of the prediction of flight delays. A plane’s delay is calculated after
its departure, i.e., the actual delay is available hours after the model predicted the possible
delay. This time can be divided into bins until the ground truth is available. For each bin,
for every observation, a prediction is made. Then, for each sub-period of time, a perfor-
mance metric is calculated. Thus, the change in the performance metric over time can
be analyzed. Finally, when the current data instance’s accurate label arrives, each bin’s
performance metric can be compared to the final label, and an overall model evaluation
takes place.

6.4.2. Evaluation Metrics

After the (delayed) labels arrive, they can be compared to the model predictions.
Metrics can be calculated to assess the performance of the stream classifier. Generally,
many works differentiate between three different types of metrics: indicators based on
the confusion matrix, kappa statistics, and other criteria related to speed and memory
usage [7,36,37,84,88].

As can be observed in the comparative work of [107], metrics based on the confusion
matrix, displayed in Table 7, are the most often-used performance measures. As such,
commonly used metrics for benchmarking are Accuracy Acc = (TP + TN)/(TP + FP +
FN + TN), Recall Rec = TP/(TP + FN), and Precision Pre = TP/(TP + FP) [88,112,131].
Further, the F1-score F1 = 2 · (Pre ·Rec)/(Pre+Rec) aggregates two of the previous metrics
in one score, which is particularly useful in the case of imbalanced data. Next to numerical
performance indicators, refs. [36,86] list the Receiver Operating Characteristic (ROC)
curve as a standard graphical representation of the trade-off between class assignments.
The points spanning the ROC curve depend on the threshold the classifier uses for assigning
observations to the positive or negative class. By calculating (and displaying) a convex hull
of the points along the ROC curve, the best classifier or threshold can easily be identified as
the one with the largest convex hull and thus covered area. Similarly, the trade-off between
recall and precision can be displayed in the Precision-Recall curve [86]. ROC and Precision-
Recall curves can be summarized in a single value, the Area Under the curve (AUC), called
AU-ROC or PR-AUC. To adapt these methods to the streaming context, they are calculated
incrementally after the arrival of new observations. For example, ref. [171] presents the
Prequential AU-ROC. In contrast to the conventional AU-ROC, it is invariant to changes in
the class distribution, as it is incrementally updated.

Appl. Sci. 2022, 12, 9094 29 of 43

Table 7. Schematic overview of a binary confusion matrix.

Actually Positive Actually Negative

Predicted positive True positive (TP) False positive (FP) TP + FP
Predicted negative False negative (FN) True negative (TN) FN + TN

TP + FN FP + TN TP + FP + FN + TN

Although the metrics based on the confusion matrix are often used in stream settings,
they are also criticized in the literature. For instance, ref. [169] mentions that the classes
are frequently imbalanced in the stream setting. A potential approach for processing
imbalanced data is aggregating as many fields as possible from the confusion matrix, as
it provides a more accurate assessment of the actual classification abilities. Still, ref. [169]
introduces the Kappa statistic κ, ranging in the interval [0, 1]. In its basic form, the Kappa
statistic relates the accuracy of a trained classifier with the accuracy of a random classifier.

A variant of this metric with a dedicated focus on the stream setting is κper, which can
handle data with temporal dependence [83]. In such scenarios—e.g., when investigating
the recordings of surveillance data—the chronological order of observations is of particular
relevance. In contrast to its classical counterpart, κper compares the trained classifier’s
accuracy with that of a persistent classifier, i.e., a classifier that always predicts according
to the label of the most recently observed instance. Thus, this metric helps to identify
misleading classifier performance over time once these two performances diverge. Related
to this line of thought, ref. [84] presents the generalized or combined Kappa statistic by
computing the geometric mean of κ and κper.

Since stream classification deals with a huge amount of data that must be processed
and kept in memory, other criteria, such as algorithm speed, memory usage, and CPU
capacity utilization, are also relevant for evaluation. Here, especially the RAM-hours are
discussed [4,36]. RAM hours indicate the number of gigabytes of RAM deployed per hour,
which originally stems from the cost of renting cloud computing services [172]. Ref. [40]
presents the running time, which is the time an algorithm needs to run on a dataset,
i.e., a predefined number of data records, and is generally measured in seconds. Ref. [88]
emphasizes that the duration of all preprocessing steps must also be considered.

Based on our literature search, the methods presented above are conventional in the
general stream classification setting. However, other metrics might be relevant for particular
purposes or well-defined specific research areas. For evaluating multi-label classification
problems, ref. [40] differentiate between example-based and label-based evaluation metrics.
Example-based metrics assess the classifier’s performance for all instances by combining
and averaging the performance metric over the whole dataset, while in the label-based
case, the performance for each label is assessed before it is averaged.

Although advancements have been made toward stream classification-specific perfor-
mance measures, authors still criticize the lack of a holistic performance metric. Current
evaluation metrics for stream classification measure individual or local aspects along the
stream but do not assess all problem dimensions for the complete stream [36,86,112]. Espe-
cially problem settings that complicate the standard settings for stream classification—such
as the emergence of novel classes, multi-label classification, or highly imbalanced classes—lack
appropriate measures [7,86].

6.4.3. Statistical Tests

Statistical tests can be used to assess the significance of classifier performance and serve
as a comparison of different classifiers. Generally, the test can be differentiated in parametric
and non-parametric tests. In parametric statistical tests, the sample data are assumed to be
derived from a population that can be adequately modeled by a probability distribution
with a fixed set of parameters. In a non-parametric model, no explicit mathematical form is
assumed for the distribution when modeling the data, but assumptions are made about
that distribution, such as continuity or symmetry.

Appl. Sci. 2022, 12, 9094 30 of 43

The McNemar test is non-parametric and evaluates whether two given classifiers
perform equally well [173]. Specifically, it compares whether the marginal frequencies,
i.e., the total row and column values of the confusion matrix, of the predictions of the
two classifiers are equal. Similarly, the sign test compares the number of data instances
misclassified by the first classifier and correctly classified by the second classifier. A one-
sided test is performed to determine which classifier has fewer misclassified data instances
based on these differences. Next to these two tests, a Wilcoxon signed-rank test can be
used [174]. The difference between the classifier results is calculated and increasingly
ordered to build ranks for the test statistic. One classifier outperforms the other if the
population ranks differ substantially, since, in this case, the corresponding test statistic
exceeds the critical value [36]. The Nemenyi parametric test can be used to compare
pairwise performances [175]. The average rank of all classifiers over multiple datasets is
calculated and compared to determine the best classifier.

Although these tests are discussed in several stream classification surveys, they are
often criticized, since they are inherently static and do not represent the temporal evolution
of stream classifier performance [36,84,169]. In consequence, since there has been no
advancement in replacing them with more appropriate statistical tests, statistical tests,
in general, are not discussed in more recent studies [7,88]. Additionally, no comparative
studies exist that evaluate the usefulness and suitability of different tests.

6.4.4. Ensemble Evaluation

In the case of algorithm ensembles, their algorithms need to be assessed on an individ-
ual basis and in terms of their contribution to the portfolio. More specifically, most works
differentiate between measuring group composition and group performance. The accu-
racy of single classifiers and classifier differences are crucial for increasing the ensemble’s
performance as a whole [5,84,126].

Group composition can be measured by evaluating the ensemble’s diversity and, thus,
complementarity. Intuitively, the diversity of the ensemble measures the heterogeneity
of its members, i.e., the benefit which can potentially be obtained by using several classi-
fiers. High classifier heterogeneity leads to uncorrelated votes of the ensemble’s members,
increasing performance. Nevertheless, note here that no correlation between ensemble
diversity and accuracy exists. It might happen that a highly diversified ensemble still
performs poorly. The relation between diversity and accuracy in this setting is further
discussed by [176].

In many works, the ensemble diversity in the streaming scenario is measured using
batch processing metrics [176–178]. For example, ref. [126] calculated standard diversity
measures and visualized them over time to meet streaming scenario challenges. Standard
measures are, for example, Yule’s Q and the disagreement measure D. Both take values
in the range of [−1, 1]. Yule’s Q assesses whether the number of equal predictions of
two ensemble members matches the number of divergent predictions. The measure of
disagreement D is the ratio of the number of cases where one classifier is correct, and the
other is incorrect relative to the total number of cases. Ref. [179] published diversity
measures for streaming scenarios. He introduced two new trend diversity measures for
data stream classification ensembles, the pair and pool error trend diversity measures.
These diversity measures were developed based on the direction and magnitude of changes
in the error trends of the base classifiers as they process subsequent samples and cope with
stream changes.

In the end, the ensemble’s performance is measured with the same metrics as for the
single classifier case. In their respective studies, for example, refs. [177,178] used accuracy,
the F1-score, and the prequential AU-ROC next to other standard evaluation measures to
assess ensemble performance. A more detailed overview of these evaluation metrics is
given in Section 6.4.2.

Appl. Sci. 2022, 12, 9094 31 of 43

6.4.5. Drift Detection Evaluation

If concept drift detectors are incorporated separately in the overall stream classification
pipeline, they must also be evaluated. Their performance directly influences the assessment
of the model, because only in case of drifts are correctly detected can the classifier make
accurate predictions. The principles of assessing classifier and concept drift detector
performance are similar: the exactness of the detection and the resilience against false
alarms should be taken into account. Thus, the probability of detecting actual changes
should be high, while the probability of raising a false alarm should be low. For an overview
of requirements for drift detection algorithms, we refer to the works of [4,112,155,180].

Generally, concept drift detectors are tested either on synthetic data or a dataset
without concept drift. Drifts must be known in advance to assess whether the detector can
detect them accurately or if they do not occur so that the false alarm rate can be tested.
Referring to Table 2, all generators could potentially be used for this purpose, since the
researcher can determine when and how a drift occurs. Additionally, the RandomRBF
by [50] or the Agrawal generator by [54] do not incorporate drifts at all, which thus could be
used to test the False Alarm Rate. This rate, as well as the misdetection rate, are discussed
by [180]. They measure how often the algorithm falsely assumes a concept drift or a drift
that comes unnoticed by the detector.

In contrast to that, refs. [4,155] present measures based on the time until the drift is
detected instead of concentrating on error rates. The mean time between false alarms—or
also called average run length—measures the expected time between false alarms when no
change occurs. The mean time detection measures how fast the detector recognizes a drift
after it occurs. Derived from that, the missed detection rate displays the probability of not
detecting the drift when it occurred. Additionally, the Mahalanobis distance can be used to
measure the span between the moments of change occurrence and change detection [181].

In most of these studies, either newly developed drift detection algorithms are tested
all at once, or an overview of current drift detection evaluation metrics is given. A compar-
ative study of these metrics, i.e., in which setting which kind of metrics should be used,
unfortunately, has not been conducted so far.

Evaluation of stream classification models is a broad topic and bears significant differ-
ences from standard batch processing. The temporal dependence of the data, as well as
possible verification latencies, impedes traditional evaluation methods. Which method is
used depends on the type of dataset at hand and the computational resources. For example,
on the one hand, keeping track of time between drift detection can be a computational
overload for some use cases. On the other hand, comparing different metrics may yield
a more accurate picture of drift detection performance than just a single metric. Thus,
the continuous development of stream-tailored procedures and metrics remains an essen-
tial research task.

7. Current and Future Research Directions

We have provided comprehensive insights into the literature regarding the Stream
Classification process. For each process step (see Figure 1), the most influential and
fundamental works were presented. Next, an overview of current research directions is
given by using a global list of identified challenges as a basis. Finally, we will look at recent
works and briefly summarize the research directions addressed therein.

7.1. Central List of Future Research Directions

Based on the works presented in Sections 3–6; we identified the following open
challenges in data stream classification:

• The lack of appropriate real-world benchmark datasets is a problem in data stream
classification, especially in areas where privacy or other regulations are applied,
e.g., in health care or when using social media data. A safe and secure way to share
the datasets must be identified and developed.

Appl. Sci. 2022, 12, 9094 32 of 43

• Most preprocessing methods (e.g., discretization) still are in preliminary stages, as they
have issues with efficiency in stream scenarios.

• Dealing with missing data is a challenging task, especially in evolving data streams.
• The combination of several data stream sources, as well as handling high-dimensional

data, is in the early stages.
• Imbalanced data is a problem in data stream classification scenarios. This challenge

touches on preprocessing tasks such as under- and oversampling and the actual
classification and drift detection methods.

• Neural network-based approaches are often inferior in efficiency.
• A unified metric or concept for evaluation of stream classifiers is still missing. Due

to the data’s time dependency and possible verification latencies, current evaluation
measures derived from the batch setting are not suitable for stream classification.

• More research regarding the detection of the type of concept drifts is needed.
• Promising potential lies in automated (hyper-)parameter configuration of classification

and drift detection algorithms.

7.2. Current Work in the Field

In this section, we elaborate on current research directions in the field. To this end, we
have summarized the topics of all papers from 2020 and 2021 (from our literature database)
in a word cloud showing the most prominent words in each title and abstract. We also
included articles only available on ArXiv to analyze current research strands. The result
can be observed in Figure 10.

co
nc

ep
t

drift
datasets

de
te

ct
io

n

based

framework

class

method

new

can

ensemble
streaming

novel
model

performance

neural

different

network

time
deep

proposed

models

knowledge

results

approach

us
ed

tasks

mining

techniques

online

networks

applications

however

using

algorithm

many

pr
ob

le
m

s

imbalanced

feature

classifier
evaluation

propose

problem

real−world

challenges

evolution

also

high

existing

accuracy
research

re
co

gn
iti

on

one

labels
label

two

due

selection

work

classifiers

characteristics

se
ve

ra
l

classes

big

experiments

information
dynamic

compared

show

st
at

e−
of

−
th

e−
ar

t

review

social

types

real
training

processing

features

local

outlier

adaptive human

distance

studies

use

sy
nt

he
tic

literature

task

efficient

first

tr
af

fic

set

may
trained

three

base

future

tree

i.e

fast

Figure 10. Wordcloud of titles and abstracts of papers published in 2020 and 2021.

7.2.1. Data Sources and Benchmarking

Some words such as “real-world”, “dataset”, and “synthetic”, indicate that research
is conducted in the field of benchmarking data sets. At the moment, especially the IoT
sector and activity recognition problems are prevalent in the literature [9,13,15]. Recent
works related to the COVID-19 pandemic have been published, in which stream classifi-
cation methods are used, e.g., for facial mask detection or the processing of ultrasound
images [29,30]. Considering the mentioned examples, it becomes clear that a special in-
terest is observed regarding the issue of privacy protection. Since data sources, such as
IoT devices or recordings of individuals, are often based on sensitive user data, this is an
additional challenge for stream classification algorithms [182]. In the future, researchers
must test modern methods of preserving data privacy, such as decentralized data storage,

Appl. Sci. 2022, 12, 9094 33 of 43

for their suitability for stream classification. In decentralized storage, data are not stored in
a central location such as a cloud but in individually encrypted blocks [183,184].

A similar problem exists in the social media domain, since social networks restrict
data sharing among researchers for the same reasons. Thus, finding benchmark solutions
for social media stream data—an image and textual-based—remains a challenge for future
works [46].

As shown in Figure 3 as well as Table 3, more numerical data sources are available than
image and textual data sources. Generally, the generation and sharing of more real-world
benchmark datasets remain an open task for the future. Existing datasets are often too small
or have other flaws such as dependent labels [34,86]. Recently, published works incorporate
multi-object detection and tracking, as well as multi-stream input [28,185,186]. Thus,
more challenging datasets are also required, which reflect the current state of technology,
e.g., for processing images of highly sensitive cameras that produce numerous images per
second [187].

To incorporate data sources and other parts of the stream classification pipeline,
frameworks can be used. The literature review demonstrated that few frameworks exist
for stream classification purposes, while many more exist for handling stream data but
cannot be used for classification. River and MOA are the most comprehensive frame-
works under active development. Until now, MOA is the most cited framework in recent
literature [13,124,188]. However, River also provides a broad range of stream classification
data sets, algorithms, drift detection, and evaluation methods for smaller tasks or situations
where researchers want to execute the stream classification pipeline in Python.

7.2.2. Data Processing

Words such as “feature”, “high”, “big”, “label”, and “outlier” demonstrate that re-
searchers work on challenges of (pre-)processing tasks such as outlier detection, labeling,
feature selection, and high dimensional data. A current example is feature selection for
multi-dimensional time series data. Within [189], relevant features are filtered by calcu-
lating their correlation with classes of the decision problem. The authors evaluated the
algorithm on six (mainly motion-capturing related) data sets and reported significantly
lower computational costs in contrast to other methods in the field. Ref. [190], on the other
hand, take the approach of splitting up data streams in a meaningful way and processing
them further based on this. Their main contribution is that the date’s origin (here called
entity) contains information useful for solving the decision problem. IoT data is split per
sensor into so-called sub-streams, for example. The approach also proposes a sampling
approach called k random entities, which selects suitable sub-streams for the classification
problem. The authors evaluate the approach on three data sets of different domains. They
conclude that the approach has potential in both the medical and sensor data fields, but the
sub-stream selection part needs further investigation.

The cleaning of highly noisy data streams is another important task for future work.
Ref. [191] enhance online stream classification algorithms by using prediction uncertainty
and active learning. Conflicting opinions of the classifiers of the ensemble are stored as
features, and instances are sent to an expert oracle from time to time. Evaluations of
IoT, cloud task and face recognition data sets show a significant increase in classification
accuracy and the cross-domain suitability of the algorithm.

7.2.3. Stream Classification Algorithms and Architectures

The word cloud offers words such as “deep”, “neural”, “network”, “ensemble”,
and “models”, which indicate that researchers investigate classification algorithm develop-
ment. Examples are further development on dynamic ensemble selection methods under
evolving data streams [192], or adaptions of the ARF model [193]. The modified ARF
algorithm combines the original adaptive forest approach with the compressed sensing
method. By this, the algorithm tackles the problem of high-dimensional data. Compressed
sensing is used as an internal preprocessing step and ensures that sparse data is com-

Appl. Sci. 2022, 12, 9094 34 of 43

pressed and only a smaller number of crucial and low coherent features is used for further
actions. The authors evaluated the approach using the MOA framework and the contained
datasets. They also created three Twitter datasets with the MOA Tweet reader to analyze
the algorithm’s performance, specifically on high-dimensional data. They tested the ap-
proach regarding its classification accuracy and performance indicators such as memory
utilization and computation time. Using the complete feature information and ARF with
the dimension reduction of compressed sensing showed comparable performance with
lower computational costs. It outperforms state-of-the-art algorithms such as Hoeffding
Adaptive Trees, Self-Adjusting Memory kNN, and Naïve Bayes [193]. Ref. [194] propose
an algorithm to handle high-dimensional data with seasonal concept drift. They adapt to
the AODE classifier based on the idea of a classical Naïve Bayes, relaxing the independence
assumption of features. They include time as a powerful feature that calculates correlation
to classes and other features. The authors evaluated the algorithm on two text-based
real-world data sets against nine state-of-the-art tree and frequency-based algorithms and
achieved consistently better results.

Aligned with the increase in computational resources, various works explore the use
of deep neural networks in the context of data stream classification. Of course, CNN’s are
constantly being developed and improved. For instance, in image analysis, it can be helpful
to combine several network structures to process different information sources of an image.
For example, ref. [15] uses a two-strand CNN approach, where one network operates
on two extracted feature bases that can be obtained from an RGB color-coded image.
The authors evaluated their approach to 3D-sign recognition data sets and demonstrated an
improvement in classification performance compared to state-of-the-art models in the field.

Ref. [195] introduces a BERT-based deep learning model for streaming NLP tasks.
Concretely, their approach is based on an adaptive network that outperforms state-of-the-
art approaches, especially regarding imbalanced data distributions. Moreover, ref. [196]
introduces a Recurrent Neural Network for astronomical lightcurve classification with a
focus on imbalanced data streams. The authors do not apply sampling strategies to the
telescope data but modify the algorithm so that the bias towards the majority class is down-
weighted. Further, they include additional contextual information—e.g., distance to other
galaxies—into the classification setting. They demonstrate that the approach outperforms
algorithms without a weighted function and additional contextual information.

7.2.4. Classifier Maintenance

As depicted in Figure 10, a large number of research papers of the last two years
include the topic of “concept drift”, “detection”, or the appearance of “novel” classes.
For example, a state-of-the-art approach to finding novel classes is to use neighborhood-
based approaches [197]. Concretely, they focus on the cohesiveness and separation index
of the Mahalanobis distance. Similarly, ref. [166] base their emerging class detection and
classification on microclusters. All data instances not immediately assigned to a close
microcluster are clustered with a k-means algorithm, and if the clusters are pure, a novel
class is detected. Ref. [198] introduces a density-based clustering approach where they
monitor sub-cluster regions to detect and adapt to concept drifts and detect novel classes.

Moreover, words related to classifier assessment such as “performance” and “accu-
racy”, as well as “evaluation”, can be observed. Assessing the performance of stream
classification models is a multi-dimensional problem requiring many steps. Some are
already adjusted to the requirements of stream classification, while others still use methods
derived from the static setting. First, the training and testing data have to be determined.
Prequential evaluation and controlled permutations are state-of-the-art methods for the
stream setting, as can be observed in the recent comparative works of [7,88], since they take
the volatile nature of stream classification data into account.

In contrast, most works on metrics focus on time-tested measurements derived from
the static setting. For example, measures such as accuracy, precision, and recall are used in
recent studies, as can be observed in the comparative work of [30,107,199,200]. However,

Appl. Sci. 2022, 12, 9094 35 of 43

this kind of metric does not reflect the volatile nature of stream classification data and
algorithms. While there are metrics that have been adapted for the stream classification
scenario—such as the κ statistics [83,169], no further progress has been made recently. Nev-
ertheless, other relevant metrics such as the duration of all preprocessing steps, RAM
hours, or memory usage are used in recent works to assess different dimensions of the
stream classifier’s performance [88]. However, a unified metric or concept is still miss-
ing. The data’s time dependency, as well as possible verification latencies, complicate
conventional assessment methods. Particularly in the case of problems that complicate the
standard classification of data streams—e.g., the emergence of novel classes, multiple label
classification, or highly imbalanced classes—appropriate measurement frameworks are
still missing, as pointed out in the works of [7,86].

The same issue applies to statistical tests for comparing classifier performances. These
tests were developed for comparing classifier results in static settings and are not for stream-
specific requirements. Although they are not included in recent surveys, e.g., by [88] or [7],
they are still being used in novel studies, such as, for example, by [201,202]. Since they are
not developed to test for the variable stream setting and take more than one dimension
of the problem into account, they only provide a very limited view of the classifier’s
performance. Ensemble evaluation methods also mostly rely on batch processing metrics,
although advancements for stream purposes are being made. Ref. [179] introduced two
new trend diversity measures based on the direction and magnitude of changes in the error
trends of classifiers. This measure is used in recent studies, e.g., by [203,204].

Finally, the stream classifier and the drift detection algorithm must be evaluated.
Ideally, the algorithm should indicate a data distribution shift at the right point in time in
the right direction. A standard drift detection method that is being used in recent studies is,
e.g., the False Alarm rate [205]—however, a comparative study as a recommendation on
when to use which metric was not conducted until now.

Overall, advancements have been made to adapt classical evaluation procedures and
metrics to the stream setting. Nevertheless, especially when considering metrics, more
holistic indicators are required to display the actual performance of stream classifiers in
more than one dimension.

8. Discussion

Since data stream classification can be applied to a multitude of different application
areas, there are many diverse research directions. Although this yields the benefit of using
potential synergies with other domains, it also complicates finding standard concepts and
terms. Especially in the area of drift detection and the classification algorithms themselves,
it is noticeable that different taxonomies exist. This diversity makes it difficult for newcom-
ers to the field to get started. In this work, we give a broad overview of work in the field of
data stream classification. Thus, the main contribution of this work is to assist users in this
research field by structuring the literature according to the classical stream classification
process—the so-called stream classification pipeline. We provide an overview of the most
influential works for each process step and link appropriate summaries and benchmarking
papers. Finally, we also highlight future research directions, as well as current research in
the field. Our literature search encompassed 320 papers in the end.

While it becomes clear from earlier works that models have been adopted from the
offline setting, current research directions in the field are increasingly focusing on specific
solutions to data stream classification. Here, predominant are the topics of concept drift
detection and adaptation, evaluation, and issues around imperfect data, such as class
imbalance or missing values. In addition, high-dimensional data and complex classification
models such as deep neural networks offer room for improvement. Another research
strand that gets almost no attention is the automated (hyper-)parameter configuration of
stream classification algorithms. Since the underlying data stream is potentially volatile
in real-life, automatically adjusting the configuration would considerably increase the
classifiers’ quality.

Appl. Sci. 2022, 12, 9094 36 of 43

All in all, it can be said that the scenario of stream classification opens a diverse field
of research. Today, there is still no common sense in some steps of the pipeline. Therefore,
scientists in the field should always keep in mind the different research focuses and statuses
of the disciplines.

Author Contributions: Conceptualization, L.C. and J.S.P.; Methodology, L.C. and J.S.P.; Formal
Analysis, L.C. and J.S.P.; Data Curation L.C.; Investigation, L.C. and J.S.P.; Writing—Original Draft
Preparation, L.C. and J.S.P. and J.B.; Writing—Review and Editing, H.T. and P.K.; Visualization, J.S.P.
and L.C.; Supervision, H.T. and P.K.; Project Administration, L.C. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by the Project DemoResil (FKZ 005-1709-0001, EFRE-0801431)
funded by the German ministry of culture and science and the BMBF-funded project Hybrid (funding
ref. 16KIS1531K). The authors acknowledge support from the European Research Center for Infor-
mation Systems (ERCIS), and the Topical Program “Algorithmization and Social Interaction” of the
University of Münster.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stefanowski, J.; Brzezinski, D. Stream Classification. In Encyclopedia of Machine Learning and Data Mining; Springer: Boston, MA,

USA, 2017; pp. 1191–1199. [CrossRef]
2. Gracewell, J.J.; Pavalarajan, S. Fall Detection Based on Posture Classification for Smart Home Environment. J. Ambient Intell.

Humaniz. Comput. 2019, 12, 3581–3588. [CrossRef]
3. Zorich, L.; Pichara, K.; Protopapas, P. Streaming Classification of Variable Stars. Mon. Not. R. Astron. Soc. 2020, 492, 2897–2909.

[CrossRef]
4. Gama, J.A.; Žliobait, I.; Bifet, A.; Pechenizkiy, M.; Bouchachia, A. A Survey on Concept Drift Adaptation. ACM Comput. Surv.

2014, 46, 44. [CrossRef]
5. Gomes, H.M.; Barddal, J.P.; Enembreck, F.; Bifet, A. A Survey on Ensemble Learning for Data Stream Classification. ACM Comput.

Surv. (CSUR) 2017, 50, 23. [CrossRef]
6. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006.
7. Din, S.U.; Shao, J.; Kumar, J.; Mawuli, C.B.; Mahmud, S.M.H.; Zhang, W.; Yang, Q. Data Stream Classification with Novel Class

Detection: A Review, Comparison and Challenges. Knowl. Inf. Syst. 2021, 63, 2231–2276. [CrossRef]
8. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep Learning for IoT Big Data and Streaming Analytics: A Survey.

IEEE Commun. Surv. Tutor. 2018, 20, 2923–2960. [CrossRef]
9. Al-Osta, M.; Bali, A.; Gherbi, A. Event Driven and Semantic Based Approach for Data Processing on IoT Gateway Devices.

J. Ambient Intell. Humaniz. Comput. 2019, 10, 4663–4678. [CrossRef]
10. Yu, L.; Gao, Y.; Zhang, Y.; Guo, L. A Framework for Classification of Data Stream Application in Vehicular Network Computing.

In Proceedings of the Green Energy and Networking, Dalian, China, 4 May 2019; Jin, J., Li, P., Fan, L., Eds.; Springer: Cham,
Switzerland, 2019; pp. 57–67.

11. Grzenda, M.; Kwasiborska, K.; Zaremba, T. Combining Stream Mining and Neural Networks for Short Term Delay Prediction.
In Proceedings of the International Joint Conference SOCO’17-CISIS’17-ICEUTE’17, León, Spain, 6–8 September 2017; Springer:
Cham, Switzerland, 2017; pp. 188–197.

12. Wang, Q.; Chen, K. Multi-Label Zero-Shot Human Action Recognition Via Joint Latent Ranking Embedding. Neural Netw. 2020,
122, 1–23. [CrossRef]

13. Khannouz, M.; Glatard, T. A Benchmark of Data Stream Classification for Human Activity Recognition on Connected Objects.
Sensors 2020, 20, 6486. [CrossRef]

14. Singh, T.; Vishwakarma, D. Video Benchmarks of Human Action Datasets: A Review. Artif. Intell. Rev. 2019, 52, 1107–1154.
[CrossRef]

15. Kumar, E.K.; Kishore, P.; Kumar, M.T.K.; Kumar, D.A. 3D Sign Language Recognition with Joint Distance and Angular Coded
Color Topographical Descriptor on a 2–Stream CNN. Neurocomputing 2020, 372, 40–54. [CrossRef]

16. Anjum, A.; Abdullah, T.; Tariq, M.F.; Baltaci, Y.; Antonopoulos, N. Video Stream Analysis in Clouds: An Object Detection and
Classification Framework for High Performance Video Analytics. IEEE Trans. Cloud Comput. 2019, 7, 1152–1167. [CrossRef]

17. Nahar, V.; Li, X.; Zhang, H.L.; Pang, C. Detecting Cyberbullying in Social Networks using Multi-Agent System. Web Intell. Agent
Syst. Int. J. 2014, 12, 375–388. [CrossRef]

http://doi.org/10.1007/978-1-4899-7687-1_908
http://dx.doi.org/10.1007/s12652-019-01600-y
http://dx.doi.org/10.1093/mnras/stz3426
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.1145/3054925
http://dx.doi.org/10.1007/s10115-021-01582-4
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1007/s12652-018-0843-y
http://dx.doi.org/10.1016/j.neunet.2019.09.029
http://dx.doi.org/10.3390/s20226486
http://dx.doi.org/10.1007/s10462-018-9651-1
http://dx.doi.org/10.1016/j.neucom.2019.09.059
http://dx.doi.org/10.1109/TCC.2016.2517653
http://dx.doi.org/10.3233/WIA-140301

Appl. Sci. 2022, 12, 9094 37 of 43

18. Tuarob, S.; Tucker, C.S.; Salathe, M.; Ram, N. An Ensemble Heterogeneous Classification Methodology for Discovering Health-
Related Knowledge in Social Media Messages. J. Biomed. Inform. 2014, 49, 255–268. [CrossRef]

19. Burdisso, S.G.; Errecalde, M.; Montes-y Gómez, M. A Text Classification Framework for Simple and Effective Early Depression
Detection over Social Media Streams. Expert Syst. Appl. 2019, 133, 182–197. [CrossRef]

20. Deviatkin, D.; Shelmanov, A.; Larionov, D. Discovering, Classification, and Localization of Emergency Events via Analyzing
of Social Network Text Streams. In Proceedings of the International Conference on Data Analytics and Management in Data
Intensive Domains, Moscow, Russia, 9–12 October 2018; Springer: Cham, Switzerland, 2018; pp. 180–196.

21. Taninpong, P.; Ngamsuriyaroj, S. Tree-Based Text Stream Clustering with Application to Spam Mail Classification. Int. J. Data
Min. Model. Manag. 2018, 10, 353–370. [CrossRef]

22. Hu, X.; Wang, H.; Li, P. Online Biterm Topic Model Based Short Text Stream Classification Using Short Text Expansion and
Concept Drifting Detection. Pattern Recognit. Lett. 2018, 116, 187–194. [CrossRef]

23. Carrasco-Davis, R.; Cabrera-Vives, G.; Förster, F.; Estévez, P.A.; Huijse, P.; Protopapas, P.; Reyes, I.; Martínez-Palomera, J.;
Donoso, C. Deep Learning for Image Sequence Classification of Astronomical Events. Publ. Astron. Soc. Pac. 2019, 131, 108006.
[CrossRef]

24. Lyon, R.; Brooke, J.; Knowles, J.; Stappers, B. A Study on Classification in Imbalanced and Partially-Labelled Data Streams. In
Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester, UK, 13–16 October 2013;
pp. 1506–1511.

25. Huijse, P.; Estevez, P.A.; Protopapas, P.; Principe, J.C.; Zegers, P. Computational Intelligence Challenges and Applications on
Large-Scale Astronomical Time Series Databases. IEEE Comput. Intell. Mag. 2014, 9, 27–39. [CrossRef]

26. Brandt, M.; Tucker, C.; Kariryaa, A.; Rasmussen, K.; Abel, C.; Small, J.; Chave, J.; Rasmussen, L.; Hiernaux, P.; Diouf, A.; et al. An
Unexpectedly Large Count of Trees in the West African Sahara and Sahel. Nature 2020, 587, 78–82. [CrossRef]

27. Krishnaveni, P.; Sutha, J. Novel Deep Learning Framework for Broadcasting Abnormal Events Obtained From Surveillance
Applications. J. Ambient Intell. Humaniz. Comput. 2020, 11, 4123. [CrossRef]

28. Ali, M.; Ali, R.; Hussain, N. Improved Medical Image Classification Accuracy on Heterogeneous and Imbalanced Data using
Multiple Streams Network. Int. J. Adv. Comput. Sci. Appl. 2021, 12, 617–622. [CrossRef]

29. Ding, Y.; Li, Z.; Yastremsky, D. Real-time Face Mask Detection in Video Data. arXiv 2021, arXiv:2105.01816.
30. Liu, L.; Lei, W.; Wan, X.; Liu, L.; Luo, Y.; Feng, C. Semi-Supervised Active Learning for COVID-19 Lung Ultrasound Multi-

symptom Classification. In Proceedings of the 2020 IEEE 32nd International Conference on Tools with Artificial Intelligence
(ICTAI), Baltimore, MD, USA, 9–11 November 2020; pp. 1268–1273. [CrossRef]

31. Sun, J.; Li, H.; Fujita, H.; Fu, B.; Ai, W. Class-Imbalanced Dynamic Financial Distress Prediction Based on Adaboost-SVM
Ensemble Combined with SMOTE and Time Weighting. Inf. Fusion 2020, 54, 128–144. [CrossRef]

32. Vanschoren, J.; van Rijn, J.N.; Bischl, B.; Torgo, L. OpenML: Networked Science in Machine Learning. SIGKDD Explor. Newsl.
2014, 15, 49–60. [CrossRef]

33. Srivani, B.; Sandhya, N.; Padmaja Rani, B. Literature review and analysis on big data stream classification techniques. Int. J.
Knowl.-Based Intell. Eng. Syst. 2020, 24, 205–215. [CrossRef]

34. Souza, V.M.A.; dos Reis, D.M.; Maletzke, A.G.; Batista, G.E.A.P.A. Challenges in Benchmarking Stream Learning Algorithms with
Real-World Data. Data Min. Knowl. Discov. 2020, 34, 1805–1858. [CrossRef]

35. Gomes, H.M.; Read, J.; Bifet, A.; Barddal, J.P.; Gama, J.a. Machine Learning for Streaming Data: State of the Art, Challenges, and
Opportunities. SIGKDD Explor. Newsl. 2019, 21, 6–22. [CrossRef]

36. Lu, J.; Liu, A.; Dong, F.; Gu, F.; Gama, J.; Zhang, G. Learning Under Concept Drift: A Review. IEEE Trans. Knowl. Data Eng. 2018,
31, 2346–2363. [CrossRef]

37. Janardan; Mehta, S. Concept drift in Streaming Data Classification: Algorithms, Platforms and Issues. Procedia Comput. Sci. 2017,
122, 804–811. [CrossRef]

38. Heywood, M. Evolutionary model building under streaming data for classification tasks: Opportunities and challenges.
Genet. Program. Evolvable Mach. 2014, 16, 283–326. [CrossRef]

39. Bifet, A.; Read, J.; Žliobaitė, I.; Pfahringer, B.; Holmes, G. Pitfalls in Benchmarking Data Stream Classification and How to
Avoid Them. In Proceedings of the Machine Learning and Knowledge Discovery in Databases, Prague, Czech Republic,
23–27 September 2013; Blockeel, H., Kersting, K., Nijssen, S., Železný, F., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2013; pp. 465–479. [CrossRef]

40. Zheng, X.; Li, P.; Chu, Z.; Hu, X. A Survey on Multi-Label Data Stream Classification. IEEE Access 2019, 8, 1249–1275. [CrossRef]
41. Engelen, J.; Hoos, H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [CrossRef]
42. Narasimhamurthy, A.; Kuncheva, L.I. A Framework for Generating Data to Simulate Changing Environments. In Proceedings of

the 25th Conference on IASTED International Multi-Conference: Artificial Intelligence and Applications, Innsbruck, Austria,
12–14 February 2007; ACTA Press: Anaheim, CA, USA, 2007; pp. 384–389.

43. Zhao, J.; Jing, X.; Yan, Z.; Pedrycz, W. Network traffic classification for data fusion: A survey. Inf. Fusion 2021, 72, 22–47.
[CrossRef]

44. Tidjon, L.N.; Frappier, M.; Mammar, A. Intrusion Detection Systems: A Cross-Domain Overview. IEEE Commun. Surv. Tutor.
2019, 21, 3639–3681. [CrossRef]

http://dx.doi.org/10.1016/j.jbi.2014.03.005
http://dx.doi.org/10.1016/j.eswa.2019.05.023
http://dx.doi.org/10.1504/IJDMMM.2018.095354
http://dx.doi.org/10.1016/j.patrec.2018.10.018
http://dx.doi.org/10.1088/1538-3873/aaef12
http://dx.doi.org/10.1109/MCI.2014.2326100
http://dx.doi.org/10.1038/s41586-020-2824-5
http://dx.doi.org/10.1007/s12652-019-01668-6
http://dx.doi.org/10.14569/IJACSA.2021.0120770
http://dx.doi.org/10.1109/ICTAI50040.2020.00191
http://dx.doi.org/10.1016/j.inffus.2019.07.006
http://dx.doi.org/10.1145/2641190.2641198
http://dx.doi.org/10.3233/KES-200042
http://dx.doi.org/10.1007/s10618-020-00698-5
http://dx.doi.org/10.1145/3373464.3373470
http://dx.doi.org/10.1109/TKDE.2018.2876857
http://dx.doi.org/10.1016/j.procs.2017.11.440
http://dx.doi.org/10.1007/s10710-014-9236-y
http://dx.doi.org/10.1007/978-3-642-40988-2_30
http://dx.doi.org/10.1109/ACCESS.2019.2962059
http://dx.doi.org/10.1007/s10994-019-05855-6
http://dx.doi.org/10.1016/j.inffus.2021.02.009
http://dx.doi.org/10.1109/COMST.2019.2922584

Appl. Sci. 2022, 12, 9094 38 of 43

45. Veit, A.; Matera, T.; Neumann, L.; Matas, J.; Belongie, S. COCO-Text: Dataset and Benchmark for Text Detection and Recognition
in Natural Images. arXiv 2016, arXiv:cs.CV/1601.07140.

46. Assenmacher, D.; Weber, D.; Preuss, M.; Calero Valdez, A.; Bradshaw, A.; Ross, B.; Cresci, S.; Trautmann, H.; Neumann, F.;
Grimme, C. Benchmarking Crisis in Social Media Analytics: A Solution for the Data Sharing Problem. Soc. Sci. Comput. Rev.
(SSCR) J. 2021, 39. [CrossRef]

47. Gama, J.; Medas, P.; Castillo, G.; Rodrigues, P. Learning with Drift Detection. In Proceedings of the Brazilian Symposium on Artificial
Intelligence; Springer: Sao Luis, Maranhao, Brazil, 2004; pp. 286–295.

48. Aha, D. Waveform Database Generator Data Set. 2021. Available online: http://archive.ics.uci.edu/ml/datasets/waveform+
database+generator+%28version+1%29 (accessed on 5 September 2022).

49. Barddal, J.P.; Murilo Gomes, H.; Enembreck, F. A Survey on Feature Drift Adaptation. In Proceedings of the 27th International
Conference on Tools with Artificial Intelligence, Vietri sul Mare, Italy, 9–11 November 2015; Volume 127, pp. 1053–1060. [CrossRef]

50. Bifet, A.; Gavaldà, R.; Holmes, G.; Pfahringer, B. Machine Learning for Data Streams: With Practical Examples in MOA; The MIT
Press: Cambridge, MA, USA, 2018. [CrossRef]

51. Hulten, G.; Spencer, L.; Domingos, P. Mining Time-Changing Data Streams. In Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001; ACM:
New York, NY, USA, 2001; pp. 97–106. [CrossRef]

52. Street, W.N.; Kim, Y. A Streaming Ensemble Algorithm (SEA) for Large-Scale Classification. In Proceedings of the Seventh ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 26–29 August 2001;
ACM: New York, NY, USA, 2001; pp. 377–382. [CrossRef]

53. Schlimmer, J.C.; Granger, R.H. Incremental Learning from Noisy Data. Mach. Learn. 1986, 1, 317–354. [CrossRef]
54. Agrawal, R.; Imielinski, T.; Swami, A. Database Mining: A Performance Perspective. IEEE Trans. Knowl. Data Eng. 1993,

5, 914–925. [CrossRef]
55. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Brooks/Cole Publishing: Monterey, CA,

USA, 1984.
56. Aha, D. LED Display Domain Data Set. 2021. Available online: https://archive.ics.uci.edu/ml/datasets/LED+Display+Domain

(accessed on 5 September 2022).
57. Elwell, R.; Polikar, R. Incremental Learning of Concept Drift in Nonstationary Environments. IEEE Trans. Neural Netw. 2011,

22, 1517–1531. [CrossRef]
58. Kohavi, R. Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In Proceedings of the Second International

Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996.
59. Data Expo. Airline On-Time Performance. 2018. Available online: http://stat-computing.org/dataexpo/2009/ (accessed on

5 September 2022).
60. Visser, B.; Gouk, H. AWS Spot Pricing Market. 2018. Available online: https://www.openml.org/d/41424 (accessed on

5 September 2022).
61. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images; Technical Report; University of Toronto: Toronto, ON, Canada,

2009.
62. Li, H. CIFAR10-DVS: An event-stream dataset for object classification. Front. Neurosci. 2017, 11, 309. [CrossRef] [PubMed]
63. Harries, M. SPLICE-2 Comparative Evaluation: Electricity Pricing; Technical Report; University of South Wales: South Wales,

UK, 1999.
64. Delany, S.J.; Cunningham, P.; Tsymbal, A.; Coyle, L. A case-based technique for tracking concept drift in spam filtering. Knowl.

Based Syst. 2005, 18, 187–195.
65. Katakis, I.; Tsoumakas, G.; Vlahavas, I. Tracking Recurring Contexts Using Ensemble Classifiers: An Application to Email

Filtering. Knowl. Inf. Syst. 2010, 22, 371–391. [CrossRef]
66. Blackard, J.; Dean, D. Comparative Accuracies of Artificial Neural Networks and Discriminant Analysis in Predicting Forest

Cover Types from Cartographic Variables. Comput. Electron. Agric. 1999, 24, 131–151. [CrossRef]
67. Vergara, A.; Vembu, S.; Ayhan, T.; Ryan, M.A.; Homer, M.L.; Huerta, R. Chemical gas sensor drift compensation using classifier

ensembles. Sens. Actuators B Chem. 2012, 166–167, 320–329. [CrossRef]
68. Rodriguez-Lujan, I.; Fonollosa, J.; Vergara, A.; Homer, M.; Huerta, R. On the calibration of sensor arrays for pattern recognition

using the minimal number of experiments. Chemom. Intell. Lab. Syst. 2014, 130, 123–134. [CrossRef]
69. Zhu, X. Stream Data Mining Repository. 2010. Available online: https://www.cse.fau.edu/~xqzhu/stream.html (accessed on

5 September 2022).
70. Killourhy, K.; Maxion, R. Why Did My Detector Do That?! In Proceedings of the Recent Advances in Intrusion Detection,

Ottawa, ON, Canada, 15–17 September 2010; Jha, S., Sommer, R., Kreibich, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 256–276.

71. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998,
86, 2278–2324. [CrossRef]

72. Žliobaitė, I. Combining Similarity in Time and Space for Training Set Formation Under Concept Drift. Intell. Data Anal. 2011,
15, 589–611. [CrossRef]

http://dx.doi.org/10.1177/08944393211012268
http://archive.ics.uci.edu/ml/datasets/waveform+database+generator+%28version+1%29
http://archive.ics.uci.edu/ml/datasets/waveform+database+generator+%28version+1%29
http://dx.doi.org/10.1109/ICTAI.2015.150
http://dx.doi.org/10.7551/mitpress/10654.001.0001
http://dx.doi.org/10.1145/502512.502529
http://dx.doi.org/10.1145/502512.502568
http://dx.doi.org/10.1007/BF00116895
http://dx.doi.org/10.1109/69.250074
https://archive.ics.uci.edu/ml/datasets/LED+Display+Domain
http://dx.doi.org/10.1109/TNN.2011.2160459
http://stat-computing.org/dataexpo/2009/
https://www.openml.org/d/41424
http://dx.doi.org/10.3389/fnins.2017.00309
http://www.ncbi.nlm.nih.gov/pubmed/28611582
http://dx.doi.org/10.1007/s10115-009-0206-2
http://dx.doi.org/10.1016/S0168-1699(99)00046-0
http://dx.doi.org/10.1016/j.snb.2012.01.074
http://dx.doi.org/10.1016/j.chemolab.2013.10.012
https://www.cse.fau.edu/~xqzhu/stream.html
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.3233/IDA-2011-0484

Appl. Sci. 2022, 12, 9094 39 of 43

73. Ditzler, G.; Polikar, R. Incremental Learning of Concept Drift from Streaming Imbalanced Data. IEEE Trans. Knowl. Data Eng.
2013, 25, 2283–2301. [CrossRef]

74. Zupan, B.; Bohanec, M.; Bratko, I.; Demsar, J. Machine Learning by Function Decomposition. In Proceedings of the Fourteenth
International Conference on Machine Learning; Morgan Kaufmann, Nashville, TN, USA, 8–12 July 1997.

75. Zhang, K.; Fan, W. Forecasting Skewed Biased Stochastic Ozone Days: Analyses, Solutions and Beyond. Knowl. Inf. Syst. 2008,
14, 299–326. [CrossRef]

76. Losing, V.; Hammer, B.; Wersing, H. Interactive online learning for obstacle classification on a mobile robot. In Proceedings of the
International Joint Conference on Neural Networks, Killarney, Ireland, 12–17 July 2015; pp. 1–8. [CrossRef]

77. Cattral, R.; Oppacher, F.; Deugo, D. Supervised and Unsupervised Data Mining with an Evolutionary Algorithm. Recent Adv.
Comput. Comput. Commun. 2002, 2, 296–300. [CrossRef]

78. Losing, V.; Hammer, B.; Wersing, H. KNN Classifier with Self Adjusting Memory for Heterogeneous Concept Drift. In Proceedings
of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; Volume 1,
pp. 291–300. [CrossRef]

79. Katakis, I.; Tsoumakas, G.; Vlahavas, I. An Ensemble of Classifiers for coping with Recurring Contexts in Data Streams. In
Proceedings of the 18th European Conference Artificial Intelligence, European Coordinating Committee for Artificial Intelligence,
Patras, Greece, 21 July 2008; pp. 763–764. [CrossRef]

80. Katakis, I.; Tsoumakas, G.; Vlahavas, I. Dynamic Feature Space and Incremental Feature Selection for the Classification of Textual
Data Streams. In Proceedings of the ECML/PKDD-2006 International Workshop on Knowledge Discovery from Data Streams,
Berlin, Germany, 18–22 September 2006; Springer: Berlin/Heidelberg, Germany, 2006; p. 107.

81. He, Y.; Sick, B. CLeaR: An adaptive continual learning framework for regression tasks. AI Perspect 2021, 3, 2. [CrossRef]
82. Zliobaite, I. How good is the Electricity benchmark for evaluating concept drift adaptation. arXiv 2013, arXiv:cs.LG/1301.3524.
83. Žliobaitė, I.; Bifet, A.; Read, J.; Pfahringer, B.; Holmes, G. Evaluation Methods and Decision Theory for Classification of Streaming

Data with Temporal Dependence. Mach. Learn. 2015, 98, 455–482. [CrossRef]
84. Krawczyk, B.; Minku, L.L.; Gama, J.; Stefanowski, J.; Woźniak, M. Ensemble learning for data stream analysis: A survey.

Inf. Fusion 2017, 37, 132–156. [CrossRef]
85. Wares, S.; Isaacs, J.; Elyan, E. Data Stream Mining: Methods and Challenges for Handling Concept Drift. SN Appl. Sci. 2019,

1, 1412. [CrossRef]
86. Wankhade, K.; Dongre, S.; Jondhale, K. Data stream classification: A review. Iran J. Comput. Sci. 2020, 3, 239–260. [CrossRef]
87. Gartner IT Glossary. Frameworks. 2021. Available online: https://www.gartner.com/en/information-technology/glossary/

framework (accessed on 5 September 2022).
88. Bahri, M.; Bifet, A.; Gama, J.; Gomes, H.M.; Maniu, S. Data stream analysis: Foundations, major tasks and tools. WIREs Data Min.

Knowl. Discov. 2021, 11, e1405. [CrossRef]
89. Nguyen, H.L.; Woon, Y.K.; Ng, W.K. A Survey on Data Stream Clustering and Classification. Knowl. Inf. Syst. 2015, 45, 535–569.

[CrossRef]
90. Inoubli, W.; Aridhi, S.; Mezni, H.; Maddouri, M.; Nguifo, E. A comparative study on streaming frameworks for big data. In

Proceedings of the Very Large Data Bases (VLDB), Rio de Janeiro, Brazil, 27–31 August 2018; Springer: Berlin/Heidelberg,
Germany, 2018.

91. García, S.; Ramírez-Gallego, S.; Luengo, J.; Benítez, J.M.; Herrera, F. Big data preprocessing: Methods and prospects. Big Data
Anal. 2016, 1, 9. [CrossRef]

92. Hulten, G.; Domingos, P. VFML: Very Fast Machine Learning Toolkit for Mining High-Speed Data Streams. 2004. Available
online: https://www.cs.washington.edu/dm/vfml/ (accessed on 5 September 2022).

93. Jubatus Team. Framework and Library for Distributed Online Machine Learning. 2019. Available online: http://jubat.us/en/
(accessed on 5 September 2022).

94. Apache Software Foundation. Apache Spark–Unified Analytics Engine for Big Data. 2021. Available online: https://spark.
apache.org (accessed on 5 September 2022).

95. Noah’s Ark Lab. streamDM: Data Mining for Spark Streaming. 2016. Available online: http://huawei-noah.github.io/streamDM/
(accessed on 5 September 2022).

96. Montiel, J.; Halford, M.; Mastelini, S.M.; Bolmier, G.; Sourty, R.; Vaysse, R.; Zouitine, A.; Gomes, H.M.; Read, J.;
Abdessalem, T.; et al. River: Machine Learning for Streaming Data in Python. arXiv 2020, arXiv:cs.LG/2012.04740.

97. Bifet, A.; Holmes, G.; Pfahringer, B.; Kranen, P.; Kremer, H.; Jansen, T.; Seidl, T. MOA: Massive Online Analysis. A Framework for
Stream Classification and Clustering. In Proceedings of the First Workshop on Applications of Pattern Analysis, Windsor, UK,
1–3 September 2010; PMLR: 2010; pp. 44–50.

98. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software: An Update.
SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

99. Ramírez-Gallego, S.; Krawczyk, B.; García, S.; Woźniak, M.; Herrera, F. A Survey on Data Preprocessing for Data Stream Mining:
Current Status and Future Directions. Neurocomputing 2017, 239, 39–57. [CrossRef]

http://dx.doi.org/10.1109/TKDE.2012.136
http://dx.doi.org/10.1007/s10115-007-0095-1
http://dx.doi.org/10.1109/IJCNN.2015.7280610
http://dx.doi.org/10.1109/CEC.2001.934267
http://dx.doi.org/10.1109/ICDM.2016.0040
http://dx.doi.org/10.3233/978-1-58603-891-5-763
http://dx.doi.org/10.1186/s42467-021-00009-8
http://dx.doi.org/10.1007/s10994-014-5441-4
http://dx.doi.org/10.1016/j.inffus.2017.02.004
http://dx.doi.org/10.1007/s42452-019-1433-0
http://dx.doi.org/10.1007/s42044-020-00061-3
https://www.gartner.com/en/information-technology/glossary/framework
https://www.gartner.com/en/information-technology/glossary/framework
http://dx.doi.org/10.1002/widm.1405
http://dx.doi.org/10.1007/s10115-014-0808-1
http://dx.doi.org/10.1186/s41044-016-0014-0
https://www.cs.washington.edu/dm/vfml/
http://jubat.us/en/
https://spark.apache.org
https://spark.apache.org
http://huawei-noah.github.io/streamDM/
http://dx.doi.org/10.1145/1656274.1656278
http://dx.doi.org/10.1016/j.neucom.2017.01.078

Appl. Sci. 2022, 12, 9094 40 of 43

100. Masud, M.M.; Chen, Q.; Gao, J.; Khan, L.; Han, J.; Thuraisingham, B. Classification and Novel Class Detection of Data Streams in
a Dynamic Feature Space. In Proceedings of the Machine Learning and Knowledge Discovery in Databases, Athens, Greece,
5–9 September 2011; Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp.
337–352.

101. Beringer, J.; Hüllermeier, E. Efficient Instance-based Learning on Data Streams. Intell. Data Anal. 2007, 11, 627–650. [CrossRef]
102. Gama, J.A.; Pinto, C. Discretization from Data Streams: Applications to Histograms and Data Mining. In Proceedings of the

2006 ACM Symposium on Applied Computing, Dijon, France, 23–27 April 2006; ACM: New York, NY, USA, 2006; pp. 662–667.
[CrossRef]

103. Prati, R.C.; Luengo, J.; Herrera, F. Emerging topics and challenges of learning from noisy data in nonstandard classification:
A survey beyond binary class noise. Knowl. Inf. Syst. 2019, 60, 63–97. [CrossRef]

104. Sun, B.; Chen, S.; Wang, J.; Chen, H. A Robust Multi-Class AdaBoost Algorithm for Mislabeled Noisy Data. Knowl.-Based Syst.
2016, 102, 87–102. [CrossRef]

105. Alghushairy, O.; Alsini, R.; Soule, T.; Ma, X. A Review of Local Outlier Factor Algorithms for Outlier Detection in Big Data
Streams. Big Data Cogn. Comput. 2020, 5, 1. [CrossRef]

106. Yala, N.; Fergani, B.; Fleury, A. Towards Improving Feature Extraction and Classification for Activity Recognition on Streaming
Data. J. Ambient Intell. Humaniz. Comput. 2017, 8, 177–189. [CrossRef]

107. Tieppo, E.; Santos, R.R.d.; Barddal, J.P.; Nievola, J.C. Hierarchical classification of data streams: A systematic literature review.
Artif. Intell. Rev. 2021, 54, 1–40. [CrossRef]

108. Zhu, Y.; Shasha, D. StatStream: Statistical Monitoring of Thousands of Data Streams in Real Time. In Proceedings of the 28th
International Conference on Very Large Databases; Bernstein, P.A., Ioannidis, Y.E., Ramakrishnan, R., Papadias, D., Eds.; Morgan
Kaufmann: San Francisco, CA, USA, 2002; Chapter 32, pp. 358–369. [CrossRef]

109. Ng, W.; Dash, M. Discovery of Frequent Patterns in Transactional Data Streams. In Transactions on Large-Scale Data- and
Knowledge-Centered Systems II; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1–30. [CrossRef]

110. Bifet, A.; Gavalda, R. Learning from Time-Changing Data with Adaptive Windowing. In Proceedings of the 2007 SIAM International
Conference on Data Mining; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2007; pp. 443–448.

111. Aggarwal, C.C. A Survey of Stream Classification Algorithms. In Data Classification: Algorithms and Applications; Charu, C.,
Aggarwal, V.K., Eds.; CRC Press: New York, NY, USA, 2014; Chapter 9, pp. 245–274.

112. Khamassi, I.; Sayed Mouchaweh, M.; Hammami, M.; Ghédira, K. Discussion and review on evolving data streams and concept
drift adapting. Evol. Syst. 2018, 9, 1–23. [CrossRef]

113. Masud, M.M.; Woolam, C.; Gao, J.; Khan, L.; Han, J.; Hamlen, K.W.; Oza, N.C. Facing the Reality of Data Stream Classification:
Coping with Scarcity of Labeled Data. Knowl. Inf. Syst. 2012, 33, 213–244. [CrossRef]

114. Žliobaitė, I.; Bifet, A.; Pfahringer, B.; Holmes, G. Active Learning with Drifting Streaming Data. IEEE Trans. Neural Netw.
Learn. Syst. 2013, 25, 27–39. [CrossRef] [PubMed]

115. Arabmakki, E.; Kantardzic, M. SOM-Based Partial Labeling of Imbalanced Data Stream. Neurocomputing 2017, 262, 120–133.
[CrossRef]

116. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif.
Intell. Res. 2002, 16, 321–357. [CrossRef]

117. Krawczyk, B.; Stefanowski, J.; Wozniak, M. Data Stream Classification and Big Data Analytics. Neurocomputing 2015, 150, 238–239.
[CrossRef]

118. Iwashita, A.S.; Papa, J.P. An Overview on Concept Drift Learning. IEEE Access 2019, 7, 1532–1547. [CrossRef]
119. Pan, S.; Zhang, Y.; Li, X. Dynamic Classifier Ensemble for Positive Unlabeled Text Stream Classification. Knowl. Inf. Syst. 2012,

33, 267–287. [CrossRef]
120. Gaber, M.M.; Zaslavsky, A.; Krishnaswamy, S. A Survey of Classification Methods in Data Streams. In Data Streams; Advances in

Database Systems; Aggarwal, C.C., Ed.; Springer: Boston, MA, USA, 2007; Volume 31, pp. 39–59. [CrossRef]
121. Lemaire, V.; Salperwyck, C.; Bondu, A. A Survey on Supervised Classification on Data Streams. Bus. Intell. 2014, 4, 88–125.
122. Barddal, J.P.; Gomes, H.M.; de Souza Britto, A.; Enembreck, F. A benchmark of classifiers on feature drifting data streams. In

Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016;
pp. 2180–2185. [CrossRef]

123. Losing, V.; Hammer, B.; Wersing, H. Incremental on-line learning: A review and comparison of state of the art algorithms.
Neurocomputing 2018, 275, 1261–1274. [CrossRef]

124. Nagendran, N.; Sultana, H.P.; Sarkar, A. A Comparative Analysis on Ensemble Classifiers for Concept Drifting Data Streams.
In Soft Computing and Medical Bioinformatics; SpringerBriefs in Applied Sciences and Technology; Springer: Singapore, 2019;
pp. 55–62. [CrossRef]

125. Li, L.; Sun, R.; Cai, S.; Zhao, K.; Zhang, Q. A Review of Improved Extreme Learning Machine Methods for Data Stream
Classification. Multimed. Tools Appl. 2019, 78, 33375–33400. [CrossRef]

126. Brzezinski, D.; Stefanowski, J. Ensemble Diversity in Evolving Data Streams. In Proceedings of the International Conference on
Discovery Science, Bari, Italy, 19–21 October 2016; Springer: Cham, Switzerland, 2016; pp. 229–244.

127. Domingos, P.; Hulten, G. Mining High-Speed Data Streams. In Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Boston, MA, USA, 20–23 August 2000; ACM: New York, NY, USA, 2000; pp. 71–80.

http://dx.doi.org/10.3233/IDA-2007-11604
http://dx.doi.org/10.1145/1141277.1141429
http://dx.doi.org/10.1007/s10115-018-1244-4
http://dx.doi.org/10.1016/j.knosys.2016.03.024
http://dx.doi.org/10.3390/bdcc5010001
http://dx.doi.org/10.1007/s12652-016-0412-1
http://dx.doi.org/10.1007/s10462-021-10087-z
http://dx.doi.org/10.1016/B978-155860869-6/50039-1
http://dx.doi.org/10.1007/978-3-642-16175-9_1
http://dx.doi.org/10.1007/s12530-016-9168-2
http://dx.doi.org/10.1007/s10115-011-0447-8
http://dx.doi.org/10.1109/TNNLS.2012.2236570
http://www.ncbi.nlm.nih.gov/pubmed/24806642
http://dx.doi.org/10.1016/j.neucom.2016.11.088
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1016/j.neucom.2014.10.025
http://dx.doi.org/10.1109/ACCESS.2018.2886026
http://dx.doi.org/10.1007/s10115-011-0469-2
http://dx.doi.org/10.1007/978-0-387-47534-9_3
http://dx.doi.org/10.1109/ICPR.2016.7899959
http://dx.doi.org/10.1016/j.neucom.2017.06.084
http://dx.doi.org/10.1007/978-981-13-0059-2_7
http://dx.doi.org/10.1007/s11042-019-7543-2

Appl. Sci. 2022, 12, 9094 41 of 43

128. Yin, C.; Feng, L.; Ma, L. An Improved Hoeffding-ID Data-Stream Classification Algorithm. J. Supercomput. 2016, 72, 2670–2681.
[CrossRef]

129. Kourtellis, N.; Morales, G.D.F.; Bifet, A.; Murdopo, A. VHT: Vertical Hoeffding Tree. In Proceedings of the International
Conference on Big Data, Washington, DC, USA, 5–8 December 2016; pp. 915–922.

130. Sun, Y.; Wang, Z.; Liu, H.; Du, C.; Yuan, J. Online Ensemble Using Adaptive Windowing for Data Streams with Concept Drift.
Int. J. Distrib. Sens. Netw. 2016, 12, 4218973. [CrossRef]

131. Gomes, H.M.; Bifet, A.; Read, J.; Barddal, J.P.; Enembreck, F.; Pfharinger, B.; Holmes, G.; Abdessalem, T. Adaptive Random
Forests for Evolving Data Stream Classification. Mach. Learn. 2017, 106, 1469–1495. [CrossRef]

132. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks.
In Proceedings of the International Joint Conference on Neural Networks, Budapest, Hungary, 25–29 July 2004; Volume 2,
pp. 985–990.

133. Liang, N.Y.; Huang, G.B.; Saratchandran, P.; Sundararajan, N. A Fast and Accurate Online Sequential Learning Algorithm for
Feedforward Networks. IEEE Trans. Neural Netw. 2006, 17, 1411–1423. [CrossRef]

134. Xu, S.; Wang, J. A Fast Incremental Extreme Learning Machine Algorithm for Data Streams Classification. Expert Syst. Appl. 2016,
65, 332–344. [CrossRef]

135. Lara-Benítez, P.; Carranza-García, M.; Martínez-Álvarez, F.; Santos, J.C.R. On the Performance of Deep Learning Models for Time
Series Classification in Streaming. In Proceedings of the 15th International Conference on Soft Computing Models in Industrial
and Environmental Applications, Burgos, Spain, 16–18 September 2020; Springer: Cham, Switzerland, 2020; pp. 144–154.

136. Elboushaki, A.; Hannane, R.; Afdel, K.; Koutti, L. xMultiD-CNN: A Multi-Dimensional Feature Learning Approach Based
on Deep Convolutional Networks for Gesture Recognition in RGB-D Image Sequences. Expert Syst. Appl. 2020, 139, 112829.
[CrossRef]

137. Lin, Z.; Li, S.; Ni, D.; Liao, Y.; Wen, H.; Du, J.; Chen, S.; Wang, T.; Lei, B. Multi-Task Learning for Quality Assessment of Fetal
Head Ultrasound Images. Med. Image Anal. 2019, 58, 101548. [CrossRef]

138. Besedin, A.; Blanchart, P.; Crucianu, M.; Ferecatu, M. Deep Online Classification Using Pseudo-Generative Models. Comput. Vis.
Image Underst. 2020, 201, 103048. [CrossRef]

139. Law, Y.N.; Zaniolo, C. An Adaptive Nearest Neighbor Classification Algorithm for Data Streams. In Proceedings of the European
Conference on Principles of Data Mining and Knowledge Discovery, Porto, Portugal, 3–7 October 2005; Jorge, A.M., Torgo, L.,
Brazdil, P., Camacho, R., Gama, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 108–120. [CrossRef]

140. Sethi, T.S.; Kantardzic, M.; Hu, H. A Grid Density Based Framework for Classifying Streaming Data in the Presence of Concept
Drift. J. Intell. Inf. Syst. 2016, 46, 179–211. [CrossRef]

141. Tennant, M.; Stahl, F.; Rana, O.; Gomes, J.B. Scalable Real-Time Classification of Data Streams with Concept Drift. Future Gener.
Comput. Syst. 2017, 75, 187–199. [CrossRef]

142. Haque, A.; Khan, L.; Baron, M. SAND: Semi-Supervised Adaptive Novel Class Detection and Classification over Data Stream. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 1652–1658.

143. Masud, M.M.; Gao, J.; Khan, L.; Han, J.; Thuraisingham, B. Classification and Novel Class Detection in Data Streams with Active
Mining. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hyderabad, India, 21–24 June
2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 311–324.

144. Widmer, G.; Kubat, M. Learning in the presence of concept drift and hidden contexts. Mach. Learn. 1996, 23, 69–101. [CrossRef]
145. Maloof, M.A.; Michalski, R.S. Selecting examples for partial memory learning. Mach. Learn. 2000, 41, 27–52. [CrossRef]
146. Bayes, T. LII. An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, FRS communicated by

Mr. Price, in a letter to John Canton, AMFR S. Philos. Trans. R. Soc. Lond. 1763, 53, 370–418.
147. Tsang, I.W.; Kocsor, A.; Kwok, J.T. Simpler Core Vector Machines with Enclosing Balls. In Proceedings of the 24th International

Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007; ACM: New York, NY, USA, 2007; pp. 911–918. [CrossRef]
148. Rai, P.; Daumé, H.; Venkatasubramanian, S. Streamed Learning: One-Pass SVMs. In Proceedings of the 21st International Jont

Conference on Artifical Intelligence, Pasadena, CA, USA, 11–17 July 2009; Morgan Kaufmann Publishers Inc.: San Francisco, CA,
USA, 2009; pp. 1211–1216. [CrossRef]

149. Hashemi, S.; Yang, Y.; Mirzamomen, Z.; Kangavari, M. Adapted One-Versus-All Decision Trees for Data Stream Classification.
IEEE Trans. Knowl. Data Eng. 2008, 21, 624–637. [CrossRef]

150. Read, J.; Pfahringer, B.; Holmes, G. Multi-Label Classification Using Ensembles of Pruned Sets. In Proceedings of the 2008 Eighth
IEEE International Conference on Data Mining, Pisa, Italy, 15–19 December 2008; pp. 995–1000.

151. Read, J.; Bifet, A.; Holmes, G.; Pfahringer, B. Scalable and Efficient Multi-Label Classification for Evolving Data Streams.
Mach. Learn. 2012, 88, 243–272. [CrossRef]

152. Lu, J.; Yang, Y.; Webb, G.I. Incremental discretization for naïve-bayes classifier. In Proceedings of the International Conference
on Advanced Data Mining and Applications, Xi’an, China, 14–16 August 2006; Li, X., Zaïane, O.R., Li, Z., Eds.; Springer:
Berlin/Heidelberg, Germany, 2006; pp. 223–238. [CrossRef]

153. Webb, G.I.; Hyde, R.; Cao, H.; Nguyen, H.L.; Petitjean, F. Characterizing Concept Drift. Data Min. Knowl. Discov. 2016, 30, 964–994.
[CrossRef]

154. Faria, E.R.; Goncalves, I.J.; de Carvalho, A.C.; Gama, J. Novelty Detection in Data Streams. Artif. Intell. Rev. 2016, 45, 235–269.
[CrossRef]

http://dx.doi.org/10.1007/s11227-015-1573-y
http://dx.doi.org/10.1155/2016/4218973
http://dx.doi.org/10.1007/s10994-017-5642-8
http://dx.doi.org/10.1109/TNN.2006.880583
http://dx.doi.org/10.1016/j.eswa.2016.08.052
http://dx.doi.org/10.1016/j.eswa.2019.112829
http://dx.doi.org/10.1016/j.media.2019.101548
http://dx.doi.org/10.1016/j.cviu.2020.103048
http://dx.doi.org/10.1007/11564126_15
http://dx.doi.org/10.1007/s10844-015-0358-3
http://dx.doi.org/10.1016/j.future.2017.03.026
http://dx.doi.org/10.1007/BF00116900
http://dx.doi.org/10.1023/A:1007661119649
http://dx.doi.org/10.1145/1273496.1273611
http://dx.doi.org/10.5555/1661445.1661639
http://dx.doi.org/10.1109/TKDE.2008.181
http://dx.doi.org/10.1007/s10994-012-5279-6
http://dx.doi.org/10.1007/11811305_25
http://dx.doi.org/10.1007/s10618-015-0448-4
http://dx.doi.org/10.1007/s10462-015-9444-8

Appl. Sci. 2022, 12, 9094 42 of 43

155. Bifet, A. Classifier Concept Drift Detection and the Illusion of Progress. In Proceedings of the International Conference on
Artificial Intelligence and Soft Computing, Zakopane, Poland, 11–15 June 2017; Springer: Cham, Switzerland, 2017; pp. 715–725.

156. Gemaque, R.N.; Costa, A.F.J.; Giusti, R.; Santos, E.M. An overview of unsupervised drift detection methods. WIREs Data Min.
Knowl. Discov. 2020, 10, e1381. [CrossRef]

157. Hu, H.; Kantardzic, M.; Sethi, T.S. No Free Lunch Theorem for concept drift detection in streaming data classification: A review.
WIREs Data Min. Knowl. Discov. 2020, 10, e1327. [CrossRef]

158. Baena-Garcıa, M.; del Campo-Ávila, J.; Fidalgo, R.; Bifet, A.; Gavalda, R.; Morales-Bueno, R. Early Drift Detection Method.
In Proceedings of the Fourth International Workshop on Knowledge Discovery from Data Streams, Philadelphia, PA, USA,
20 August 2006; ACM: New York, NY, USA, 2006; Volume 6, pp. 77–86.

159. Frias-Blanco, I.; del Campo-Ávila, J.; Ramos-Jimenez, G.; Morales-Bueno, R.; Ortiz-Diaz, A.; Caballero-Mota, Y. Online and
Non-Parametric Drift Detection Methods Based on Hoeffding’s Bounds. IEEE Trans. Knowl. Data Eng. 2014, 27, 810–823.
[CrossRef]

160. Liu, A.; Zhang, G.; Lu, J. Fuzzy Time Windowing for Gradual Concept Drift Adaptation. In Proceedings of the IEEE International
Conference on Fuzzy Systems, Naples, Italy, 9–12 July 2017; pp. 1–6.

161. Dasu, T.; Krishnan, S.; Venkatasubramanian, S.; Yi, K. An Information-Theoretic Approach to Detecting Changes in Multi-
Dimensional Data Streams. In Proceedings of the Symposium on the Interface of Statistics, Computing Science, and Applications,
Pasadena, CA, USA, 24–27 May 2006; American Statistical Association: New York, NY, USA, 2006.

162. Page, E.S. Continuous inspection schemes. Biometrika 1954, 41, 100–115. [CrossRef]
163. Wang, H.; Abraham, Z. Concept Drift Detection for Streaming Data. In Proceedings of the International Joint Conference on

Neural Networks, Killarney, Ireland, 12–17 July 2015; pp. 1–9. [CrossRef]
164. Spinosa, E.J.; de Carvalho, A.P.d.L.F.; Gama, J. Novelty Detection with Application to Data Streams. Intell. Data Anal. 2009,

13, 405–422. [CrossRef]
165. Faria, E.R.; Gama, J.; Carvalho, A.C. Novelty Detection Algorithm for Data Streams Multi-Class Problems. In Proceedings of the

28th Annual ACM Symposium on Applied Computing, Coimbra, Portugal, 18–22 March 2013; ACM: New York, NY, USA, 2013;
pp. 795–800.

166. Din, S.U.; Shao, J. Exploiting Evolving Micro-Clusters for Data Stream Classification with Emerging Class Detection. Inf. Sci.
2020, 507, 404–420. [CrossRef]

167. Anderson, R.; Koh, Y.S.; Dobbie, G. CPF: Concept Profiling Framework for Recurring Drifts in Data Streams. In Proceedings of the
Australasian Joint Conference on Artificial Intelligence, Hobart, TAS, Australia, 5–8 December 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 203–214.

168. Anderson, R.; Koh, Y.S.; Dobbie, G.; Bifet, A. Recurring Concept Meta-Learning for Evolving Data Streams. Expert Syst. Appl.
2019, 138, 112832. [CrossRef]

169. Bifet, A.; de Francisci Morales, G.; Read, J.; Holmes, G.; Pfahringer, B. Efficient Online Evaluation of Big Data Stream Classifiers.
In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW,
Australia, 10–13 August 2015; ACM: New York, NY, USA, 2015; pp. 59–68. [CrossRef]

170. Grzenda, M.; Gomes, H.M.; Bifet, A. Delayed labelling evaluation for data streams. Data Min. Knowl. Discov. 2020, 34, 1237–1266.
[CrossRef]

171. Brzezinski, D.; Stefanowski, J. Prequential AUC for Classifier Evaluation and Drift Detection in Evolving Data Streams. In
Proceedings of the 3rd International Conference on New Frontiers in Mining Complex Patterns, Nancy, France, 19 September
2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 87–101. [CrossRef]

172. Bifet, A.; Holmes, G.; Pfahringer, B.; Frank, E. Fast Perceptron Decision Tree Learning from Evolving Data Streams. In Proceedings
of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Hyderabad, India, 21–24 June 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 299–310. [CrossRef]

173. McNemar, Q. Note on the sampling error of the difference between correlated proportions or percentages. Psychometrika 1947,
12, 153–157. [CrossRef]

174. Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80–83. [CrossRef]
175. Nemenyi, P. Distribution-Free Multiple Comparisons. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1663.
176. Bonab, H.; Can, F. Less Is More: A Comprehensive Framework for the Number of Components of Ensemble Classifiers. IEEE Trans.

Neural Netw. Learn. Syst. 2019, 30, 2735–2745. [CrossRef]
177. Sidhu, P.; Bhatia, M.P.S. A Novel Online Ensemble Approach to Handle Concept Drifting Data Streams: Diversified Dynamic

Weighted Majority. Int. J. Mach. Learn. Cybern. 2018, 9, 37–61. [CrossRef]
178. Büyükcakir, A.; Bonab, H.; Can, F. A Novel Online Stacked Ensemble for Multi-Label Stream Classification. In Proceedings of the

27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–26 October 2018; ACM: New
York, NY, USA, 2018; pp. 1063–1072.

179. Jackowski, K. New Diversity Measure for Data Stream Classification Ensembles. Eng. Appl. Artif. Intell. 2018, 74, 23–34.
[CrossRef]

180. Goncalves, P.M.; de Carvalho Santos, S.G.; Barros, R.S.; Vieira, D.C. A Comparative Study on Concept Drift Detectors.
Expert Syst. Appl. 2014, 41, 8144–8156. [CrossRef]

181. Mahalanobis, P.C. On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 1936, 2, 49–55.

http://dx.doi.org/10.1002/widm.1381
http://dx.doi.org/10.1002/widm.1327
http://dx.doi.org/10.1109/TKDE.2014.2345382
http://dx.doi.org/10.1093/biomet/41.1-2.100
http://dx.doi.org/10.1109/IJCNN.2015.7280398
http://dx.doi.org/10.3233/IDA-2009-0373
http://dx.doi.org/10.1016/j.ins.2019.08.050
http://dx.doi.org/10.1016/j.eswa.2019.112832
http://dx.doi.org/10.1145/2783258.2783372
http://dx.doi.org/10.1007/s10618-019-00654-y
http://dx.doi.org/10.1007/978-3-319-17876-9_6
http://dx.doi.org/10.1007/978-3-642-13672-6_30
http://dx.doi.org/10.1007/BF02295996
http://dx.doi.org/10.2307/3001968
http://dx.doi.org/10.1109/TNNLS.2018.2886341
http://dx.doi.org/10.1007/s13042-015-0333-x
http://dx.doi.org/10.1016/j.engappai.2018.05.006
http://dx.doi.org/10.1016/j.eswa.2014.07.019

Appl. Sci. 2022, 12, 9094 43 of 43

182. Chamikara, M.A.P.; Bertók, P.; Liu, D.; Camtepe, S.; Khalil, I. Efficient Data Perturbation for Privacy Preserving and Accurate
Data Stream Mining. Pervasive Mob. Comput. 2018, 48, 1–19. [CrossRef]

183. Meurisch, C.; Bayrak, B.; Mühlhäuser, M. Privacy-Preserving AI Services through Data Decentralization. In Proceedings of
the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; Association for Computing Machinery: New York, NY, USA, 2020;
pp. 190–200. [CrossRef]

184. Soni, M.; Barot, Y.; Gomathi, S. A Review on Privacy-Preserving Data Preprocessing. J. Cybersecur. Inf. Manag. 2020, 4, 16–30.
[CrossRef]

185. Li, X.; Guivant, J. Efficient and accurate object detection with simultaneous classification and tracking. arXiv 2020, arXiv:2007.02065.
186. Zhang, C.; Li, R.; Kim, W.; Yoon, D.; Patras, P. Driver Behavior Recognition via Interwoven Deep Convolutional Neural Nets

With Multi-Stream Inputs. IEEE Access 2020, 8, 191138–191151. [CrossRef]
187. Lin, Y.; Ding, W.; Qiang, S.; Deng, L.; Li, G. ES-ImageNet: A Million Event-Stream Classification Dataset for Spiking Neural

Networks. Front. Neurosci. 2021, 15, 726582. [CrossRef]
188. Sun, Y.; Sun, Y.; Dai, H. Two-Stage Cost-Sensitive Learning for Data Streams With Concept Drift and Class Imbalance. IEEE Access

2020, 8, 191942–191955. [CrossRef]
189. Kathirgamanathan, B.; Cunningham, P. A Feature Selection Method for Multi-dimension Time-Series Data. In Proceedings

of the Advanced Analytics and Learning on Temporal Data, Ghent, Belgium, 18 September 2020; Lemaire, V.; Malinowski, S.;
Bagnall, A., Guyet, T., Tavenard, R., Ifrim, G., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 220–231.

190. Unnikrishnan, V.; Beyer, C.; Matuszyk, P.; Niemann, U.; Pryss, R.; Schlee, W.; Ntoutsi, E.; Spiliopoulou, M. Entity-Level Stream
Classification: Exploiting Entity Similarity to Label the Future Observations Referring to an Entity. Int. J. Data Sci. Anal. 2020,
9, 1–15. [CrossRef]

191. Zhao, Z.; Birke, R.; Han, R.; Robu, B.; Bouchenak, S.; Mokhtar, S.; Chen, L.Y. Enhancing Robustness of On-Line Learning Models
on Highly Noisy Data. IEEE Trans. Dependable Secur. Comput. 2021, 18, 2177–2192. [CrossRef]

192. Zyblewski, P.; Sabourin, R.; Woźniak, M. Data Preprocessing and Dynamic Ensemble Selection for Imbalanced Data Stream
Classification. In Proceedings of the Machine Learning and Knowledge Discovery in Databases, Ghent, Belgium, 14–18 September
2020; Cellier, P., Driessens, K., Eds.; Springer: Cham, Switzerland, 2020; pp. 367–379.

193. Bahri, M.; Gomes, H.M.; Bifet, A.; Maniu, S. CS-ARF: Compressed Adaptive Random Forests for Evolving Data Stream Classifica-
tion. In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020;
pp. 1–8.

194. Godahewa, R.; Yann, T.; Bergmeir, C.; Petitjean, F. Seasonal Averaged One-Dependence Estimators: A Novel Algorithm to
Address Seasonal Concept Drift in High-Dimensional Stream Classification. In Proceedings of the IEEE International Joint
Conference on Neural Networks, Glasgow, UK, 19–24 July 2020; pp. 1–8.

195. Ahrens, K.; Abawi, F.; Wermter, S. DRILL: Dynamic Representations for Imbalanced Lifelong Learning. In Proceedings of the
Artificial Neural Networks and Machine Learning Conference; Springer International Publishing: Cham, Switzerland, 2021.
[CrossRef]

196. Burhanudin, U.F.; Maund, J.R.; Killestein, T.; Ackley, K.; Dyer, M.J.; Lyman, J.; Ulaczyk, K.; Cutter, R.; Mong, Y.L.; Steeghs, D.; et al.
Light Curve Classification with Recurrent Neural Networks for GOTO: Dealing with Imbalanced Data. Mon. Not. R. Astron. Soc.
2021, 505, 4345–4361. [CrossRef]

197. Li, X.; Zhou, Y.; Jin, Z.; Yu, P.; Zhou, S. A Classification and Novel Class Detection Algorithm for Concept Drift Data Stream
Based on the Cohesiveness and Separation Index of Mahalanobis Distance. J. Electr. Comput. Eng. 2020, 2020, 4027423. [CrossRef]

198. Yan, X.; Homaifar, A.; Sarkar, M.; Girma, A.; Tunstel, E. A Clustering-based framework for Classifying Data Streams. In Pro-
ceedings of the Thirtieth International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 19–27 August 2021;
pp. 3257–3263. [CrossRef]

199. Alevizopoulou, S.; Koloveas, P.; Tryfonopoulos, C.; Raftopoulou, P. Social Media Monitoring for IoT Cyber-Threats. In Proceedings
of the 2021 IEEE International Conference on Cyber Security and Resilience (CSR), Rhodes, Greece, 26–28 July 2021; pp. 436–441.

200. Vicuna, M.; Khannouz, M.; Kiar, G.; Chatelain, Y.; Glatard, T. Reducing Numerical Precision Preserves Classification Accuracy
in Mondrian Forests. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando, FL, USA,
15–18 December 2021.

201. Grzyb, J.; Klikowski, J.; Wozniak, M. Hellinger Distance Weighted Ensemble for Imbalanced Data Stream Classification.
J. Comput. Sci. 2021, 51, 101314. [CrossRef]

202. Pugliese, V.; Costa, R.; Hirata, C. Comparative Evaluation of the Supervised Machine Learning Classification Methods and the
Concept Drift Detection Methods in the Financial Business Problems. Lect. Notes Bus. Inf. Process. 2021, 417, 268–292. [CrossRef]

203. Zhang, Z.; Han, H.; Cui, X.; Fan, Y. Novel Application of Multi-Model Ensemble Learning for Fault Diagnosis in Refrigeration
Systems. Appl. Therm. Eng. 2019, 164, 114516. [CrossRef]

204. Nguyen, T.T.; Luong, A.V.; Dang, M.T.; Liew, A.W.C.; McCall, J. Ensemble Selection based on Classifier Prediction Confidence.
Pattern Recognit. 2020, 100, 107104. [CrossRef]

205. Li, P.; Wu, M.; He, J.; Hu, X. Recurring Drift Detection and Model Selection-Based Ensemble Classification for Data Streams with
Unlabeled Data. New Gener. Comput. 2021, 39, 341–376. [CrossRef]

http://dx.doi.org/10.1016/j.pmcj.2018.05.003
http://dx.doi.org/10.1145/3366423.3380106
http://dx.doi.org/10.54216/JCIM.040202
http://dx.doi.org/10.1109/ACCESS.2020.3032344
http://dx.doi.org/10.3389/fnins.2021.726582
http://dx.doi.org/10.1109/ACCESS.2020.3031603
http://dx.doi.org/10.1007/s41060-019-00177-1
http://dx.doi.org/10.1109/TDSC.2021.3063947
http://dx.doi.org/10.1007/978-3-030-86340-1_33
http://dx.doi.org/10.1093/mnras/stab1545
http://dx.doi.org/10.1155/2020/4027423
http://dx.doi.org/10.24963/ ijcai.2021/448
http://dx.doi.org/10.1016/j.jocs.2021.101314
http://dx.doi.org/10.1007/978-3-030-75418-1_13
http://dx.doi.org/10.1016/j.applthermaleng.2019.114516
http://dx.doi.org/10.1016/j.patcog.2019.107104
http://dx.doi.org/10.1007/s00354-021-00126-2

	Introduction
	Background and Stream Classification Pipeline
	Definition and Requirements of Data Stream Classification
	Process-Oriented Stream Classification Pipeline
	Literature Base

	Data Sources and Benchmarking
	Application Areas and Data Types
	Benchmark Datasets
	Generators
	Datasets

	Benchmarking Frameworks

	Data Processing
	Preprocessing
	Feature Selection
	Instance Selection
	Feature Space Simplification and Noise Removal

	Data Segmentation
	Labeling

	Stream Classification Algorithms and Architectures
	Architecture
	Algorithms
	Trees
	Neural Network
	Neighborhood Based
	Rule-Based
	Frequency-Based
	Support Vector Machines

	Specific Classification Problems

	Classifier Maintenance
	Concept Drift
	Drift Detection Algorithms
	Error Driven
	Distribution Based
	Statistical Test Based
	Semi- and Unsupervised
	Reoccurring Concept Detection

	Update Mechanisms
	Updating Mode
	Adaptation Methods

	Evaluation
	Test Procedure
	Evaluation Metrics
	Statistical Tests
	Ensemble Evaluation
	Drift Detection Evaluation

	Current and Future Research Directions
	Central List of Future Research Directions
	Current Work in the Field
	Data Sources and Benchmarking
	Data Processing
	Stream Classification Algorithms and Architectures
	Classifier Maintenance

	Discussion
	References

