
Zurich Open Repository and
Archive
University of Zurich
University Library
Strickhofstrasse 39
CH-8057 Zurich
www.zora.uzh.ch

Year: 2019

OpenML: An R Package to Connect to the Networked Machine Learning
Platform OpenML

Casalicchio, Giuseppe ; Bossek, Jakob ; Lang, Michel ; Kirchhoff, Dominik ; Kerschke, Pascal ; Hofner,
Benjamin ; Seibold, Heidi ; Vanschoren, Joaquin ; Bischl, Bernd

DOI: https://doi.org/10.1007/s00180-017-0742-2

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-130579
Journal Article
Accepted Version

Originally published at:
Casalicchio, Giuseppe; Bossek, Jakob; Lang, Michel; Kirchhoff, Dominik; Kerschke, Pascal; Hofner,
Benjamin; Seibold, Heidi; Vanschoren, Joaquin; Bischl, Bernd (2019). OpenML: An R Package to
Connect to the Networked Machine Learning Platform OpenML. Computational Statistics, 34(3):977-
991.
DOI: https://doi.org/10.1007/s00180-017-0742-2

Noname manuscript No.
(will be inserted by the editor)

OpenML: An R Package to Connect to the Networked

Machine Learning Platform OpenML

Giuseppe Casalicchio · Jakob Bossek ·

Michel Lang · Dominik Kirchhoff ·

Pascal Kerschke · Benjamin Hofner ·

Heidi Seibold · Joaquin Vanschoren ·

Bernd Bischl

Received: date / Accepted: date

Abstract OpenML is an online machine learning platform where researchers
can easily share data, machine learning tasks and experiments as well as or-
ganize them online to work and collaborate more efficiently. In this paper, we
present an R package to interface with the OpenML platform and illustrate its
usage in combination with the machine learning R package mlr (Bischl et al,
2016). We show how the OpenML package allows R users to easily search, down-
load and upload data sets and machine learning tasks. Furthermore, we also
show how to upload results of experiments, share them with others and down-
load results from other users. Beyond ensuring reproducibility of results, the
OpenML platform automates much of the drudge work, speeds up research,
facilitates collaboration and increases the users’ visibility online.

Keywords Databases · Machine Learning · R · Reproducible Research

Giuseppe Casalicchio, Bernd Bischl
Department of Statistics, Ludwig-Maximilians-University Munich,
80539 Munich, Germany
E-mail: giuseppe.casalicchio@stat.uni-muenchen.de

Jakob Bossek, Pascal Kerschke
Information Systems and Statistics, University of Münster,
48149 Münster, Germany

Michel Lang
Department of Statistics, TU Dortmund University, 44227 Dortmund, Germany

Dominik Kirchhoff
Dortmund University of Applied Sciences and Arts, 44227 Dortmund, Germany

Benjamin Hofner
Section of Biostatistics, Paul-Ehrlich-Institut, 63225 Langen, Germany

Heidi Seibold
Epidemiology, Biostatistics and Prevention Institute, University of Zurich,
8001 Zurich, Switzerland

Joaquin Vanschoren
Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands

ar
X

iv
:1

70
1.

01
29

3v
1

 [
st

at
.M

L
]

 5
 J

an
 2

01
7

2 Giuseppe Casalicchio et al.

1 Introduction

OpenML is an online machine learning platform for sharing and organizing
data, machine learning algorithms and experiments (Vanschoren et al, 2013).
It is designed to create a frictionless, networked ecosystem (Nielsen, 2012),
allowing people all over the world to collaborate and build directly on each
other’s latest ideas, data and results. Key elements of OpenML are data sets,
tasks, flows and runs:

– Data sets can be shared (under a licence) by uploading them or simply
linking to existing data repositories (e.g., mldata.org, figshare.com). For
known data formats (e.g., ARFF for tabular data), OpenML will automat-
ically analyze and annotate the data sets with measurable characteristics
to support detailed search and further analysis. Data sets can be repeatedly
updated or changed and are then automatically versioned.

– Tasks can be viewed as containers including a data set and additional in-
formation defining what is to be learned. They define which input data are
given and which output data should be obtained. For instance, classifica-
tion tasks will provide the target feature, the evaluation measure (e.g., the
area under the curve) and the estimation procedure (e.g., cross-validation
splits) as inputs. As output they expect a description of the machine learn-
ing algorithm or workflow that was used and, if available, its predictions.

– Flows are implementations of single machine learning algorithms or whole
workflows that solve a specific task, e.g., a random forest implementation
is a flow that can be used to solve a classification or regression task. Ideally,
flows are already implemented (or custom) algorithms in existing software
that take OpenML tasks as inputs and can automatically read and solve
them. They also contain a list (and description) of possible hyperparame-
ters that are available for the algorithm.

– Runs are the result of executing flows, optionally with preset hyperpa-
rameter values, on tasks and contain all expected outputs and evaluations
of these outputs (e.g., the accuracy of predictions). Runs are fully repro-
ducible because they are automatically linked to specific data sets, tasks,
flows and hyperparameter settings. They also include the authors of the
run and any additional information provided by them, such as runtimes.
Similar to data mining challenge platforms (e.g., Kaggle; Carpenter, 2011),
OpenML evaluates all submitted results (using a range of evaluation mea-
sures) and compares them online. The difference, however, is that OpenML
is designed for collaboration rather than competition: anyone can browse,
immediately build on and extend all shared results.

As an open science platform, OpenML provides important benefits for the
science community and beyond.

Benefits for Science Many sciences have made significant breakthroughs by
adopting online tools that help organizing, structuring and analyzing scientific
data online (Nielsen, 2012). Indeed, any shared idea, question, observation or

An R Package to Connect to the OpenML Platform 3

tool may be noticed by someone who has just the right expertise to spark new
ideas, answer open questions, reinterpret observations or reuse data and tools
in unexpected new ways. Therefore, sharing research results and collaborating
online as a (possibly cross-disciplinary) team enables scientists to quickly build
on and extend the results of others, fostering new discoveries.

Moreover, ever larger studies become feasible as a lot of data are already
available. Questions such as “Which hyperparameter is important to tune?”,
“Which is the best known workflow for analyzing this data set?” or “Which
data sets are similar in structure to my own?” can be answered in minutes by
reusing prior experiments, instead of spending days setting up and running
new experiments (Vanschoren et al, 2012).

Benefits for Scientists Scientists can also benefit personally from using Open-
ML. For example, they can save time, because OpenML assists in many routine
and tedious duties: finding data sets, tasks, flows and prior results, setting up
experiments and organizing all experiments for further analysis. Moreover, new
experiments are immediately compared to the state of the art without always
having to rerun other people’s experiments.

Another benefit is that linking one’s results to those of others has a large
potential for new discoveries, leading to more publications and more collab-
oration with other scientists all over the world. Finally, OpenML can help
scientists to reinforce their reputation by making their work (published or
not) visible to a wide group of people and by showing how often one’s data,
code and experiments are downloaded or reused in the experiments of others.

Benefits for Society OpenML also provides a useful learning and working envi-
ronment for students, citizen scientists and practitioners. Students and citizen
scientist can easily explore the state of the art and work together with top
minds by contributing their own algorithms and experiments. Teachers can
challenge their students by letting them compete on OpenML tasks or by
reusing OpenML data in assignments. Finally, machine learning practitioners
can explore and reuse the best solutions for specific analysis problems, interact
with the scientific community or efficiently try out many possible approaches.

The remainder of this paper is structured as follows. First, we discuss the
web services offered by the OpenML server and the website on OpenML.org
that allows web access to all shared data and several tools for data orga-
nization and sharing. Second, we briefly introduce the mlr package (Bischl
et al, 2016; Schiffner et al, 2016), which is a machine learning toolbox for R

(R Core Team, 2016) and offers a unified interface to many machine learning
algorithms. Third, we discuss and illustrate some important functions of the
OpenML R package. After that, we illustrate its usage in combination with the
mlr R package by conducting a short case study. Finally, we conclude with a
discussion and an outlook to future developments.

4 Giuseppe Casalicchio et al.

2 The OpenML Platform

The OpenML platform consists of several layers of software:

Web API Any application (or web application), can communicate with the
OpenML server through the extensive Web API1. Data sets, tasks, flows and
runs can be created, read, updated, deleted, searched and tagged through
simple HTTP calls. An overview of calls is available on http://www.openml.

org/api_docs.

Website OpenML.org is a website offering easy browsing, organization and
sharing of all data, code and experiments. It allows users to easily search and
browse all shared data sets, tasks, flows and runs, as well as to compare and
visualize all combined results. It provides an easy way to check and manage
your experiments anywhere, anytime and discuss them with others online. See
Figure 1 for a few screenshots of the OpenML website.

Programming APIs OpenML also offers interfaces in multiple programming
languages, such as the R interface presented here, which hides the API calls and
allow scientists to interact with the server using language-specific functions.
As we demonstrate below, the OpenML R package allows R users to search and
download data sets and upload the results of machine learning experiments
in just a few lines of code. Other interfaces exist for Python, Java and C#

(.NET). For tools that usually operate through a graphical interface, such as
WEKA (Hall et al, 2009), MOA (Bifet et al, 2010) and RapidMiner (van Rijn
et al, 2013), plug-ins exist that integrate OpenML sharing facilities.

OpenML is organized as an open source project, hosted on GitHub2 and is
free to use under the CC-BY licence. When uploading new data sets and code,
users can select under which licence they wish to share the data, OpenML will
then state licences and citation requests online and in descriptions downloaded
from the Web API.

OpenML has an active developer community and everyone is welcome to
help extend it or post new suggestions through the website or through GitHub.
Currently, there are close to 1 700 000 runs on about 20 000 data sets and
3 500 unique flows available on the OpenML platform. While still in beta
development, it has over 1 400 registered users, over 1 800 frequent visitors
and the website is visited by around 200 unique visitors every day, from all
over the world. It currently has server-side support for classification, regression,
clustering, data stream classification, learning curve analysis, survival analysis
and machine learning challenges for classroom use.

1 This is an application programming interface (API) that offers a set of calls (e.g., to
download/upload data) using representational state transfer (REST): a simple, lightweight
communication mechanism based on standard HTTP requests.

2 https://github.com/openml

An R Package to Connect to the OpenML Platform 5

Fig. 1 Screenshots of the OpenML website. The top part shows the data set ’autos’, with
wiki description and descriptive overview of the data features. The bottom part shows a
classification task, with an overview of the best submitted flows with respect to the predictive
accuracy as performance measure. Every dot here is a single run (further to the right is
better).

6 Giuseppe Casalicchio et al.

3 The mlr R Package

The mlr package (Bischl et al, 2016; Schiffner et al, 2016) offers a clean, easy-to-
use and flexible domain-specific language for machine learning experiments in
R. An object-orientated interface is adopted to unify the definition of machine
learning tasks, setup of learning algorithms, training of models, predicting and
evaluating the algorithm’s performance. This unified interface hides the actual
implementations of the underlying learning algorithms. Replacing one learning
algorithm with another becomes as easy as changing a string. Currently, mlr
has built-in support for classification, regression, multilabel classification, clus-
tering and survival analysis and includes in total 160 modelling techniques3.
A plethora of further functionality is implemented in mlr, e.g., assessment of
generalization performance, comparison of different algorithms in a scientifi-
cally rigorous way, feature selection and algorithms for hyperparameter tuning
(Lang et al, 2015). On top of that, mlr offers a wrapper mechanism, which
allows to extend learners through pre-train, post-train, pre-predict and post-
predict hooks. A wrapper extends the current learner with added functionality
and expands the hyperparameter set of the learner with additional hyperpa-
rameters provided by the wrapper. Currently, many wrappers are available,
e.g., missing value imputation, class imbalance correction, feature selection,
tuning, bagging and stacking, as well as a wrapper for user-defined data pre-
processing. Wrappers can be nested in other wrappers, which can be used to
create even more complex workflows. The package also supports parallelization
on different levels based on different parallelization backends (local multicore,
socket, MPI computation modes or on managed high-performance systems via
the package BatchJobs (Bischl et al, 2015)) and sophisticated visualization
methods for research and teaching.

The OpenML package makes use of mlr as a supporting package. It offers
methods to automatically run mlr learners (flows) on OpenML tasks while
hiding all of the necessary structural transformations (see Section 4.4).

4 The OpenML R Package

The OpenML R package is an interface to interact with the OpenML server
directly from within R. Users can retrieve data sets, tasks, flows and runs
from the server and also create and upload their own. This section details
how to install and configure the package and demonstrates its most important
functionalities.

3 A complete list of the integrated learners and how to integrate own learners, as well as
further information on the mlr package can be found in the corresponding tutorial (http:
//mlr-org.github.io/mlr-tutorial/).

An R Package to Connect to the OpenML Platform 7

4.1 Installation and Configuration

To interact with the OpenML server, users need to authenticate using an
API key, a secret string of characters that uniquely identifies the user. It is
generated and shown on users’ profile page after they register on the website
http://www.openml.org. For demonstration purposes, we will use a public
read-only API key that only allows to retrieve information from the server
and should be replaced with the user’s personal API key to be able to use all
features. The R package can be easily installed and configured as follows:
install.packages("OpenML")

library("OpenML")

saveOMLConfig(apikey = "c1994bdb7ecb3c6f3c8f3b35f4b47f1f")

The saveOMLConfig function creates a config file, which is always lo-
cated in a folder called .openml within the user’s home directory. This file
stores the user’s API key and other configuration settings, which can always
be changed manually or through the saveOMLConfig function. Alternatively,
the setOMLConfig function allows to set the API key and the other entries
temporarily, i.e., only for the current R session.

4.2 Listing Information

In this section, we show how to list the available OpenML data sets, tasks, flows
and runs using listing functions that always return a data.frame containing
the queried information. Each data set, task, flow and run has a unique ID,
which can be used to access it directly.

Listing Data Sets and Tasks A list of all data sets and tasks that are avail-
able on the OpenML server can be obtained using the listOMLDataSets and
listOMLTasks function, respectively. Each entry provides information such as
the ID, the name and basic characteristics (e.g., number of features, num-
ber of observations, classes, missing values) of the corresponding data set.
In addition, the list of tasks contains information about the task type (e.g.,
"Supervised Classification"), the evaluation measure (e.g., "Predictive
Accuracy") and the estimation procedure (e.g., "10-fold Crossvalidation")
used to estimate model performance. Note that multiple tasks can be defined
for a specific data set, for example, the same data set can be used for multiple
task types (e.g. classification and regression tasks) as well as for tasks differing
in their estimation procedure, evaluation measure or target value.

To find data sets or tasks that meet specific requirements, one can supply
arguments to the listing functions. In the example below, we list all supervised
classification tasks based on data sets having two classes for the target feature,
between 500 and 999 instances, at most 100 features and no missing values:
tasks = listOMLTasks(task.type = "Supervised Classification",

number.of.classes = 2, number.of.instances = c(500, 999),

number.of.features = c(1, 100), number.of.missing.values = 0)

8 Giuseppe Casalicchio et al.

tasks[1:2, c("task.id", "name", "number.of.instances", "number.of.features")]

task.id name number.of.instances number.of.features

1 37 diabetes 768 9

2 49 tic-tac-toe 958 10

Listing Flows and Runs When using the mlr package, flows are basically learn-
ers from mlr, which, as stated previously, can also be a more complex workflow
when different mlr wrappers are nested. Custom flows can be created by inte-
grating custom machine learning algorithms and wrappers into mlr. The list
of all available flows on OpenML can be downloaded using the listOMLFlows
function. Each entry contains information such as its ID, its name, its version
and the user who first uploaded the flow to the server. Note that the list of
flows will not only contain flows created with R, but also flows from other ma-
chine learning toolkits, such as WEKA (Hall et al, 2009), MOA (Bifet et al,
2010) and scikit-learn (Pedregosa et al, 2011), which can be recognized by the
name of the flow.

When a flow, along with a specific setup (e.g., specific hyperparameter
values), is applied to a task, it creates a run. The listOMLRuns function lists
all runs that, for example, refer to a specific task.id or flow.id. To list
these evaluations as well, the listOMLRunEvaluations function can be used.
In Figure 2, we used ggplot2 (Wickham, 2009) to visualize the predictive
accuracy of runs, for which only flows created with mlr were applied to the
task with ID 37:
res = listOMLRunEvaluations(task.id = 37)

res = res[grep("mlr.", res$flow.name),]

res = res[order(res$predictive.accuracy),]

res$flow.name = factor(res$flow.name, unique(res$flow.name))

library("ggplot2")

ggplot(res, aes(x = predictive.accuracy, y = flow.name)) +

geom_point() + xlab("Predictive Accuracy") + ylab("Flow Name")

Fig. 2 The predictive accuracy of all mlr flows on task 37. The numbers in brackets refer
to the version of the flow. Multiple dots for the same flow refer to runs with different
hyperparameter values for that flow.

An R Package to Connect to the OpenML Platform 9

4.3 Downloading OpenML Objects

Most of the listing functions described in the previous section will list entities
by their OpenML IDs, e.g., the task.id for tasks, the flow.id for flows and
the run.id for runs. In this section, we show how these IDs can be used to
download a certain data set, task, flow or run from the OpenML server. All
downloaded data sets, tasks, flows and runs will be stored in the cachedir

directory, which will be in the .openml folder by default but can also be speci-
fied in the configuration file (see Section 4.1). Before downloading an OpenML
object, the cache directory will be checked if that object is already available in
the cache. If so, no internet connection is necessary and the requested object
is retrieved from the cache.

Downloading Data Sets and Tasks The getOMLDataSet function returns an
S3-object of class OMLDataSet that contains the data set as a data.frame in
a $data slot, in addition to some pieces of meta-information:
ds = getOMLDataSet(data.id = 15)

ds

##

Data Set "breast-w" :: (Version = 1, OpenML ID = 15)

Default Target Attribute: Class

To retrieve tasks, the getOMLTask function can be used with their corre-
sponding task ID. Note that the ID of a downloaded task is not equal to the
ID of the data set. Each task is returned as an S3-object of class OMLTask and
contains the OMLDataSet object as well as the predefined estimation proce-
dure, evaluation measure and the target feature in an additional $input slot.
Further technical information can be found in the package’s help page.

Downloading Flows and Runs The getOMLFlow function downloads all infor-
mation of the flow, such as the name, all necessary dependencies and all avail-
able hyperparameters that can be set. If the flow was created in R, it can be
converted into an mlr learner using the convertOMLFlowToMlr function:
mlr.lrn = convertOMLFlowToMlr(getOMLFlow(4782))

mlr.lrn

Learner classif.randomForest from package randomForest

Type: classif

Name: Random Forest; Short name: rf

Class: classif.randomForest

Properties: twoclass,multiclass,numerics,factors,ordered,prob,class.weights

Predict-Type: response

Hyperparameters:

This allows users to apply the downloaded learner to other tasks or to
modify the learner using functions from mlr and produce new runs.

The getOMLRun function downloads a single run and returns an OMLRun

object containing all information that are connected to this run, such as the
ID of the task and the ID of the flow:

10 Giuseppe Casalicchio et al.

run = getOMLRun(run.id = 1816245)

run

##

OpenML Run 1816245 :: (Task ID = 42, Flow ID = 4782)

User ID : 348

Tags : study_30

Learner : mlr.classif.randomForest(17)

Task type: Supervised Classification

The most important information for reproducibility, next to the exact data
set and flow version, are the hyperparameter and seed settings that were used
to create this run. This information is contained in the OMLRun object and
can be extracted via getOMLRunParList(run) and getOMLSeedParList(run),
respectively.

If the run solves a supervised regression or classification task, the corre-
sponding predictions can be accessed via run$predictions and the evaluation
measures computed by the server via run$output.data$evaluations.

4.4 Creating Runs

The easiest way to create a run is to define a learner, optionally with a preset
hyperparameter value, using the mlr package. Each mlr learner can then be
applied to a specific OMLTask object using the function runTaskMlr. This will
create an OMLMlrRun object, for which the results can be uploaded to the
OpenML server as described in the next section. For example, a random forest
from the randomForest R package (Liaw andWiener, 2002) can be instantiated
using the makeLearner function from mlr and can be applied to a classification
task via:
lrn = makeLearner("classif.randomForest", mtry = 2)

task = getOMLTask(task.id = 37)

run.mlr = runTaskMlr(task, lrn)

To run a previously downloaded OpenML flow, one can use the runTaskFlow
function, optionally with a list of hyperparameters:
flow = getOMLFlow(4782)

run.flow = runTaskFlow(task, flow, par.list = list(mtry = 2))

To display benchmarking results, one can use the convertOMLMlrRunToBMR
function to convert one or more OMLMlrRun objects to a single BenchmarkResult
object from the mlr package so that several powerful plotting functions4 from
mlr can be applied to that object (see Figure 3 for an example).

4.5 Uploading and Tagging

Uploading OpenML Objects It is also possible to upload data sets, flows and
runs to the OpenML server to share and organize experiments and results on-

4 See http://mlr-org.github.io/mlr-tutorial/release/html/benchmark_experiments

for examples.

An R Package to Connect to the OpenML Platform 11

line. Data sets, for example, are uploaded with the uploadOMLDataSet func-
tion. OpenML will activate the data set if it passes all checks, meaning that
it will be returned in listing calls. Creating tasks from data sets is currently
only possible through the website, see http://www.openml.org/new/task.

OMLFlow objects can be uploaded to the server with the uploadOMLFlow

function and are automatically versioned by the server: when a learner is
uploaded carrying a different R or package version, a new version number and
flow.id is assigned. If the same flow has already been uploaded to the server,
a message that the flow already exists is displayed and the associated flow.id

is returned. Otherwise, the flow is uploaded and a new flow.id is assigned to
it:
lrn = makeLearner("classif.randomForest")

flow.id = uploadOMLFlow(lrn)

A run created with the runTaskMlr or the runTaskFlow function can be up-
loaded to the OpenML server using the uploadOMLRun function. The server will
then automatically compute several evaluation measures for this run, which
can be retrieved using the listOMLRunEvaluations function as described pre-
viously.

Tagging and Untagging OpenML Objects The tagOMLObject function is able
to tag data sets, tasks, flows and runs with a user-defined string, so that finding
OpenML objects with a specific tag becomes easier. For example, the task with
ID 1 can be tagged as follows:
tagOMLObject(id = 1, object = "task", tags = "test-tagging")

To retrieve a list of objects with a given tag, the tag argument of the
listing functions can be used (e.g., listOMLTasks(tag = "test-tagging")).
The listing functions for data sets, tasks, flows and runs also show the tags
that were already assigned, for example, we already tagged data sets from
UCI (Asuncion and Newman, 2007) with the string "uci" so that they can
be queried using listOMLDataSets(tag = "uci"). In order to remove one or
more tags from an OpenML object, the untagOMLObject function can be used,
however, only self-created tags can be removed, e.g.:
untagOMLObject(id = 1, object = "task", tags = "test-tagging")

4.6 Further Features

Besides the aforementioned functionalities, the OpenML package allows to fill
up the cache directory by downloading multiple objects at once (using the
populateOMLCache function), to remove all files from the cache directory
(using clearOMLCache), to get the current status of cached data sets (us-
ing getCachedOMLDataSetStatus), to delete OpenML objects created by the
uploader (using deleteOMLObject), to list all estimation procedures (using
listOMLEstimationProcedures) as well as all available evaluation measures

12 Giuseppe Casalicchio et al.

(using listOMLEvaluationMeasures) and to get more detailed information
on data sets (using getOMLDataSetQualities).

5 Case Study

In this section, we illustrate the usage of OpenML by performing a small com-
parison study between a random forest, bagged trees and single classification
trees. We first create the respective binary classification learners using mlr,
then query OpenML for suitable tasks, apply the learners to the tasks and
finally evaluate the results.

5.1 Creating Learners

We choose three implementations of different tree algorithms, namely the
CART algorithm implemented in the rpart package (Therneau et al, 2015),
the C5.0 algorithm from the package C50 (Kuhn et al, 2015) and the con-

ditional inference trees implemented in the ctree function from the package
party (Hothorn et al, 2006). For the random forest, we use the implementation
from the package randomForest (Liaw and Wiener, 2002). The bagged trees
can conveniently be created using mlr’s bagging wrapper. For the random for-
est and all bagged tree learners, the number of trees is set to 50. We create a
list that contains the random forest, the two bagged trees and the three tree
algorithms5:
lrn.list = list(

makeLearner("classif.randomForest", ntree = 50),

makeBaggingWrapper(makeLearner("classif.rpart"), bw.iters = 50),

makeBaggingWrapper(makeLearner("classif.C50"), bw.iters = 50),

makeLearner("classif.rpart"),

makeLearner("classif.C50"),

makeLearner("classif.ctree")

)

5.2 Querying OpenML

For this study, we consider only binary classification tasks that use smaller
data sets from UCI (Asuncion and Newman, 2007), e.g., between 100 and
999 observations, have no missing values and use 10-fold cross-validation for
validation:
tasks = listOMLTasks(data.tag = "uci",

task.type = "Supervised Classification", number.of.classes = 2,

number.of.missing.values = 0, number.of.instances = c(100, 999),

estimation.procedure = "10-fold Crossvalidation")

Table 1 shows the resulting tasks of the query, which will be used for the
further analysis.

5 We do not use bagging for the ctree algorithm due to large memory requirements.

An R Package to Connect to the OpenML Platform 13

task.id name number.of.instances number.of.features
37 diabetes 768 9
39 sonar 208 61
42 haberman 306 4
49 tic-tac-toe 958 10
52 heart-statlog 270 14
57 ionosphere 351 35

Table 1 Overview of OpenML tasks that will be used in the study.

5.3 Evaluating Results

We now apply all learners from lrn.list to the selected tasks using the
runTaskMlr function and use the convertOMLMlrRunToBMR function to cre-
ate a single BenchmarkResult object containing the results of all experiments.
This allows using, for example, the plotBMRBoxplots function from mlr to
visualize the experiment results (see Figure 3):
grid = expand.grid(task.id = tasks$task.id, lrn.ind = seq_along(lrn.list))

runs = lapply(seq_row(grid), function(i) {

task = getOMLTask(grid$task.id[i])

ind = grid$lrn.ind[i]

runTaskMlr(task, lrn.list[[ind]])

})

bmr = do.call(convertOMLMlrRunToBMR, runs)

plotBMRBoxplots(bmr)

Fig. 3 Cross-validated predictive accuracy per learner and task. Each boxplot contains 10
values for one complete cross-validation.

14 Giuseppe Casalicchio et al.

We can upload and tag the runs, e.g., with the string "study 30" to facil-
itate finding and listing the results of the runs using this tag:
lapply(runs, uploadOMLRun, tags = "study_30")

The server will then compute all possible measures, which takes some time
depending on the number of runs. The results can then be listed using the
listOMLRunEvaluations function and can be visualized using the ggplot2

package:
evals = listOMLRunEvaluations(tag = "study_30")

evals$flow.name = factor(evals$flow.name, unique(evals$flow.name))

evals$task.id = as.factor(evals$task.id)

library("ggplot2")

ggplot(evals, aes(x = task.id, y = predictive.accuracy,

colour = flow.name, group = flow.name)) +

geom_point() + geom_line() + ylab("Predictive Accuracy") + xlab("Task ID")

Fig. 4 Results of the produced runs. Each point represents the averaged predictive accuracy
over all cross-validation iterations generated by running a particular learner on the respective
task.

Figure 4 shows the cross-validated predictive accuracies of our six learners
on the considered tasks. Here, the random forest produced the best predictions,
except on task 49, where the bagged C50 trees achieved a slightly better result.
In general, the two bagged trees performed marginally worse than the random
forest and better than the single tree learners.

An R Package to Connect to the OpenML Platform 15

6 Conclusion and Outlook

OpenML is an online platform for open machine learning that is aimed at con-
necting researchers who deal with any part of the machine learning workflow.
The OpenML platform automates the sharing of machine learning tasks and
experiments through the tools that scientists are already using, such as R. The
OpenML package introduced in this paper makes it easy to share and reuse data
sets, tasks, flows and runs directly from the current R session without the need
of using other programming environments or the web interface.

Current work is being done on implementing the possibility to connect
to OpenML via browser notebooks6 and running analysis directly on online
servers without the need of having R or any other software installed locally. In
the future, it will also be possible that users can specify with whom they want
to share, e.g., data sets.

References

Asuncion A, Newman D (2007) UCI Machine Learning Repository. University
of California, School of Information and Computer Science

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) MOA: Massive Online
Analysis. Journal of Machine Learning Research 11:1601–1604

Bischl B, Lang M, Mersmann O, Rahnenführer J, Weihs C (2015) BatchJobs
and BatchExperiments: Abstraction mechanisms for using R in batch en-
vironments. Journal of Statistical Software 64(11):1–25, URL http://www.

jstatsoft.org/v64/i11/

Bischl B, Lang M, Kotthoff L, Schiffner J, Richter J, Studerus E, Casalicchio G,
Jones ZM (2016) mlr: Machine Learning in R. Journal of Machine Learning
Research 17(170):1–5

Carpenter J (2011) May the Best Analyst Win. Science 331(6018):698–699
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten I (2009) The
WEKA Data Mining Software: An Update. SIGKDD Explorations 11(1):10–
18

Hothorn T, Hornik K, Zeileis A (2006) Unbiased Recursive Partitioning: A
Conditional Inference Framework. Journal of Computational and Graphical
Statistics 15(3):651–674

Kuhn M, Weston S, Coulter N, code for C50 by R Quinlan MCC (2015)
C50: C5.0 Decision Trees and Rule-Based Models. URL https://CRAN.R-

project.org/package=C50, R package version 0.1.0-24
Lang M, Kotthaus H, Marwedel P, Weihs C, Rahnenführer J, Bischl B (2015)
Automatic Model Selection for High-dimensional Survival Analysis. Journal
of Statistical Computation and Simulation 85(1):62–76

Liaw A, Wiener M (2002) Classification and Regression by randomForest. R
News 2(3):18–22, URL http://CRAN.R-project.org/doc/Rnews/

6 https://github.com/everware

16 Giuseppe Casalicchio et al.

Nielsen M (2012) Reinventing Discovery: The New Era of Networked Science.
Princeton University Press

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blon-
del M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cour-
napeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12:2825–2830

R Core Team (2016) R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, URL
https://www.R-project.org/

van Rijn JN, Umaashankar V, Fischer S, Bischl B, Torgo L, Gao B, Winter
P, Wiswedel B, Berthold MR, Vanschoren J (2013) A RapidMiner Exten-
sion for Open Machine Learning. In: RapidMiner Community Meeting and
Conference 2013, pp 59–70

Schiffner J, Bischl B, Lang M, Richter J, Jones ZM, Probst P, Pfisterer F,
Gallo M, Kirchhoff D, Kühn T, et al (2016) mlr Tutorial. arXiv preprint
arXiv:160906146

Therneau T, Atkinson B, Ripley B (2015) rpart: Recursive Partitioning and
Regression Trees. URL http://CRAN.R-project.org/package=rpart, R
package version 4.1-10

Vanschoren J, Blockeel H, Pfahringer B, Holmes G (2012) Experiment
Databases. A New Way to Share, Organize and Learn from Experiments.
Machine Learning 87(2):127–158

Vanschoren J, van Rijn JN, Bischl B, Torgo L (2013) OpenML: Networked
Science in Machine Learning. SIGKDD Explorations 15(2):49–60

Wickham H (2009) ggplot2: Elegant Graphics for Data Analysis. Springer-
Verlag New York, URL http://ggplot2.org

	1 Introduction
	2 The OpenML Platform
	3 The mlr R Package
	4 The OpenML R Package
	5 Case Study
	6 Conclusion and Outlook

