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Abstract. State of the Art inexact solvers of the NP-hard Traveling
Salesperson Problem (TSP) are known to mostly yield high-quality solu-
tions in reasonable computation times. With the purpose of understand-
ing different levels of instance difficulties, instances for the current State
of the Art heuristic TSP solvers LKH+restart and EAX+restart are pre-
sented which are evolved using a sophisticated evolutionary algorithm.
More specifically, the performance differences of the respective solvers
are maximized resulting in instances which are easier to solve for one
solver and much more difficult for the other. Focusing on both optimiza-
tion directions, instance features are identified which characterize both
types of instances and increase the understanding of solver performance
differences.
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1 Introduction

In the Traveling Salesperson Problem (TSP) we aim to find a minimal cost
roundtrip tour in an edge-weighted graph, which visits each node exactly once
and returns to the starting node. A plethora of algorithmic approaches for this
famous NP-hard combinatorial problem was developed in the past decades. Inex-
act solvers for the TSP are known to produce high-quality solutions in reasonable
time compared to exact solvers such as Concorde [1]. Recently, the EAX solver [2]
was shown to be competitive to the well-known State of the Art LKH algorithm
[3], more specifically respective restart variants LKH+restart and EAX+restart
even improve the original versions [4] on the Euclidean TSP. However, there is
no single inexact solver which operates best on all possible problem instances
regarding solution quality. In this work, we investigate performance differences
of the current State of the Art TSP solvers on specifically evolved instances.
Efficient algorithm selection approaches [5] in this field are conducted in
a feature- and instance-based fashion. TSP features, e.g. in [6-9]!, are com-
puted on benchmark instances and related to algorithm performance allowing for

! These feature sets are available in the R-package salesperson [10].

© Springer International Publishing AG 2016
G. Adorni et al. (Eds.): AT*TA 2016, LNAI 10037, pp. 3-12, 2016.
DOI: 10.1007/978-3-319-49130-1_1



4 J. Bossek and H. Trautmann

constructing algorithm selection models for unseen instances based on machine
learning techniques.

Understanding which instance characteristics pose a specific level of difficulty
onto high-performing TSP solvers is an active research field, see e.g. [4,11]. In
this paper, we specifically address LKH+restart compared to EAX+restart as
the two current State of the Art TSP solvers with potential for improving their
standalone application by means of a portfolio approach [4]. We are specifically
interested in instances on which both solvers exhibit maximum performance
difference, i.e., which are much harder to solve for one of the solvers, while we
focus both directions. Thus, the performance ratio is used as fitness function of
a sophisticated evolutionary algorithm for evolving instances which was already
used in a similar fashion for single solvers in [7,8,12,13]. Two variants of solver
performance are contrasted. The classical mean parl0O score is supplemented by
focussing on the median solver runtime over a fixed number of runs diminishing
the influence of timeouts in individual runs. Moreover, the influence of rounding
instances to a grid structure is analysed systematically. Additionally, we contrast
characteristics of instances which are much harder or much easier for one solver
w.r.t. the other.

Section 2 details the evolutionary algorithm. Experimental results are then
presented in Sect. 3. Conclusions and an outlook on future research are given in
Sect. 4.

2 EA for Evolving Instances

Algorithm 1 reflects the process of the evolutionary algorithm in terms of
pseudocode. The core parameter of the EA is the kind of fitness function used.
As the EA aims at generating instances with maximum performance difference
of two solvers, we define the fitness function as the performance ratio P4 py(I)
for a pair of solvers A and B, i.e.

~ Pa(l)
-~ Ps(I)

Pa,py(I)

on a specific instance I, where P4(I) and Pg(I) are the solver performances
of solver A and B on instance I. Solver performance in our scenario is either
determined by the standard indicator penalized average runtime or by the penal-
ized median runtime. The former repeatedly measures the runtime of the solver
on an instance until the optimal tour (pre-computed by Concorde) has been
found and computes the arithmetic mean subsequently. In case the cutoff time
timeLimit is reached, ten times the cutoff time is used for further computations
as a penalty. However, inside the EA, the actual cutoff time is used ensuring
that the probability of removal of such a solution at later algorithm stages is
not unreasonably low. The evaluation at the final generation uses the classical
parl0 score with the full penalty. The median score is much more insensitive to
outliers and maximum ratio in medians is much harder to obtain.
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Algorithm 1. Evolving EA

1: function EA(fitnessFun, popSize, instSize, generations, timeLimit, cells,

rnd=true)

2: poolSize = | popSize / 2 |

3: population = GENERATERANDOMINSTANCES(popSize, instSize) > in [0, 1)?
4: while stopping condition not met do

5: for i = 1 — popSize do

6: fitness[i] = FITNESSFUN(populationl[i])

7 end for

8: matingPool = CREATEMATINGPOOL

9: > 2-tournament-selection
10: offspring[1] = GETBESTFROM

11: CURRENTPOPULATION > 1-elitism
12: for i = 2 — popSize do

13: Choose pl and p2 randomly from the

14: mating pool

15: offspring[i] = APPLYVARIATIONS(p1, p2)

16: Rescale offsspring to [0, 1]? by dimension

17: if rnd then

18: Round each point to nearest cell grid

19: end if
20: end for
21: population = offspring

22: end while
23: end function

The initial population of size popSize is randomly generated in [0, 1]? for
instances of size instSize and the performance ratio is computed. Distances are
scaled by multiplying with a factor of 100 and afterwards rounded to the nearest
integer. This step is neccassary since EAX expects integer distances. The EA is
then run for a fixed number of generations and the evolutionary loop is executed
as follows: The mating pool is formed by 2-tournament selection supplemented by
the best solution of the current population (1-elitism). Two different mutation
operators are applied to each combination of randomly drawn instance pairs
of the mating pool. Uniform mutation replacing coordinates of selected nodes
with new randomly chosen coordinates is applied with a very low probability
possibly followed by gaussian mutation adding normal noise to the selected point
coordinates. Therefore, global as well as local changes can come into effect. In
the current version the EA does not use any recombination operator. A single
EA generation ends after rescaling the instance to completely cover [0, 1]? and,
if rnd = true, rounding the points to the nearest cell grid. The latter relates to
important relevant structures in practice such as the structural design of circuit
boards.



6 J. Bossek and H. Trautmann

3 Experiments

3.1 Experimental Setup

In total 200 TSP instances were evolved. For all four considered opti-
mization directions, i.e. Prxn pax), P(rax,cxm), P(LKH restart, EAX restart)
and P(gAX4restart, LK Hrestart), N each case 25 instances were generated
with activated and deactivated rounding respectively. Based on prelimi-
nary experiments and experimental results of [8,12] the EA parameters
were set as follows: timeLimit = 120, popSize = 30, generations =
5000, wuniformMutationRate = 0.05, normalMutationRate = 0.1,
normalMutationSD = 0.025 and cells = 100. We used the reference imple-
mentation LKH 2.0.7 based on the former implementation 1.3 [14], the original
EAX implementation as well as specific restart variants as described in [4]. The
solvers were repeatedly evaluated, three times inside the EA due to a limited
computational budget but ten times for final evaluations. As described in Sect. 2
either the parl0 score or the median score was computed for the final instances.

For comparison and practical validation, performance ratios of the respec-
tive solvers on TSPLIB instances? of comparable size, i.e. 200 < instSize < 400
were computed for both kinds of performance measures. Moreover, 100 random
instances in [0, 1]? were generated while the same rounding strategy of the dis-
tance matrix was applied as used inside the EA for the evolved instances. All
experiments were run on the parallel linux computer cluster PALMA at Univer-
sity of Miinster, consisting of 3528 processor cores in total. The utilized compute
nodes are 2,6 GHz machines with 2 hexacore Intel Westmere processors, totally
12 cores per node and 2 GB main memory per core.
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Fig. 1. Average (left) and median (right) par10 scores (log-scale) of LKH+restart and
EAX+restart on evolved, random and TSPLIB instances. A specific symbol visualizes
whether instances were rounded to a grid structure (rnd) or not (nrnd).

2 TSPLIB-Instances: a280, gil262, kroA200, kroB200, lin318, pr226, pr264, pr299,
rd400, ts225, tsp225.
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3.2 Results

Figures 1 and 2 give an overview about the performance scores of the considered
solver pairs, i.e., both for the original as well as the restart variants. Evolved
instances are visualized together with random and TSPLIB instances.
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Fig. 2. Average (left) and median (right) parl0 scores (log-scale) of LKH and EAX on
evolved, random and TSPLIB instances. A specific symbol visualizes whether instances
were rounded to a grid structure (rnd) or not (nrnd).

It becomes obvious that in both pairings the presented EA successfully gen-
erated instances with much higher performance differences of both solvers than
usually present in random as well as TSPLIB instances. Whether the instance
was rounded to a grid structure inside the EA does not have a structural influ-
ence on the relation of the performance scores. Moreover, we see that generating
easier instances for LKH+restart compared to the EAX+restart is a much harder
task than in case of considering the opposite direction. Specifically, EAX+restart
timeouts did not occur here. On the contrary, for variants without restart, this
effect cannot be observed. In addition, in some cases, the EA did not converge in
that instances are of similar difficulty for both solvers. This behaviour, however,
is due to a part of solver runs resulting in timeouts as reflected by the location
of the points in case the median scores are considered (Fig. 2, lower right part).
In general, evaluating with median scores diminishes the influence of timeouts.
Maximum median scores can only be obtained in case at least fifty percent of
solver runs on a specific instance result in a timeout. Therefore, there could be
potential of using this kind of performance measure inside the EA. Results are
presented further down.

The previous observations are reflected in Fig.3 as well. Here, boxplots of
performance scores on the evolved instances for each solver depending on the
optimization direction as well as the rounding activations are given. Supplemen-
tary to Figs. 1 and 2 all solvers have been evaluated on the respective instances.
Not surprisingly, instances specifically generated for the restart variants do not
result in such extreme performance differences for the classical variants and the
other way round. However, the basic tendency can be observed here as well.
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Fig. 3. Mean (left) and median parl0 scores (right) of the four solvers depending on
rounding (rnd) and type of optimization (log-scale).

Evaluating with median scores shows that especially the pairing (LKH,EAX),
i.e. generating easier instances for LKH, does not show the desired performance
effects. Figure 4 explicitly provides boxplots of the performance ratios P4, 5) and
thus summarizes all effects previously listed, in particular the huge differences
in performance ratios compared to random and TSPLIB instances.

Understanding Characteristics of Extreme Instances. Next we try to under-
stand which structural TSP characteristics, termed TSP instance features, of
the evolved instances are suitable to distinguish between easy and hard to solve
instances respectively. Those features could be used in algorithm selection sce-
narios to select the best solver out of a portfolio of solvers. A classification app-
roach was used in order to separate the respective groups of the most extreme
instances by means of well-known established TSP features as introduced in
[6,8]. The R-package salesperson [10] was used for this purpose. However, we
did not consider expensive features such as local search, clustering distance based
features as well as branch and cut techniques in order to avoid much computa-
tional overhead, especially regarding the possible influence on future algorithm
selection models as e.g. in [4].

In case of the restart variants, the ten most extreme instances w.r.t. perfor-
mance ratios on mean parlQ scores are selected, i.e. the ten best EA results of
both optimization directions for the solver pairings. A random forest was used
to distinguish between both instance sets combined with a feature selection app-
roach based on leave-one-out cross-validation and an outer resampling resulting
in a median misclassification error of zero and a respective mean misclassification
error of 0.3 regarding all folds. Thus, we are able to separate both instance sets in
a satisfying way including an indication which features are of crucial importance
here. Figure 5 shows the respective feature importance plot created by means of
the R-package flacco [15]. Red dots reflect features which are used in at least
70% of the folds, orange labeled features at least in 30% and black ones at
least once. In this regard the median distance of the minimum spanning tree is
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Fig. 4. Performance ratios based on mean parl0 scores of the four considered algo-
rithms on all considered instance sets.

identified as the crucial feature separating both instance classes. The results coni-
cide with the results of [8] where the mean distance of the minimum spanning
tree was identified as a separating feature between easy and hard instances for
TSP approximation algorithms. This result is promising with respect to future
work in the algorithm selection context: The computation of minimum spanning
tree characteristics is an computationally cheap task and we strive for cheap fea-
ture, since wasting a lot of runtime for the feature computation before actually
solving the TSP itself is senseless.

The same analysis was conducted for the original solver variants. However,
as evolved instances are much denser in the lower right and upper left corner in
Fig. 2 than in the restart case, we only selected the respective five most extreme
instances. In this case different features play a key role in explaining solver per-
formance differences including nearest-neighbor based features as visualized in
Fig.5. Again, the median misclassification error vanishes while the mean mis-
classification error is 0.2, i.e. only two out of the ten instances are misclassified.

Median Scores as EA Internal Performance Measures. In order to investigate
possible potential of using the median parl0 score inside the EA for performance
evaluation, we conducted a smaller experiment focussed on the restart variants
with inactive rounding as these solvers in our view are most interesting. This
lead to fifty evolved instances, i.e. 25 for each optimization direction.

Figure 6 gives an overview about the resulting median parl0 scores on the
newly evolved instances together with the random instance and TSPLIB results.
We see that the EA is not successful in improving the performance ratio of both
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Fig. 5. Variable Importance Plot of Random Forest distinguishing the (left): ten most
extreme instances w.r.t. performance ratio for the restart variants, (right): five most
extreme instances w.r.t. performance ratio for the original algorithm variants.
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Fig. 6. Median parl0 scores (log-scale) of LKH+restart and EAX-+restart on evolved
(median score fitness), random and TSPLIB instances.

solvers even further compared to the resulting median evaluation on the instances
originally generated inside the EA using mean parl0 scores. The same is true for
comparing the mean parl0 scores on both scenarios (see Fig. 7). However, slight
improvements are visible in case easier instances for LKH-+restart are evolved.
Most probably the median alone does not provide enough differentiation between
varying solver results over the repetitions.

However, in our view an adequate combination of mean and median scores
inside the EA fitness function is promising in order to get deeper insights into
solver variance on the considered instances. We will investigate this issue in
further studies together with increasing the number of solver repetitions along
the evolutionary loop.
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Fig. 7. Comparison of mean and median par10 ratios (log-scale) of instance sets evolved
for LKH+restart and EAX+restart either by using the mean parl0 or the median score
inside the EA as fitness function.

4 Conclusions

This work focusses on the two current State of the Art inexact TSP solvers LKH
and EAX together with their respective restart variants. In order to increase
understanding of performance differences of both solvers, a sophisticated evolu-
tionary algorithm was used to evolve instances which lead to maximum perfor-
mance difference of both solvers on the specific instances. Both directions are
analyzed, i.e. we generated instances which are easier for solver A but much
harder for solver B as well as the opposite case. In this regard we observed sub-
stantial differences in solver performance ratios compared to random or TSPLIB
instances on the evolved instances. By feature-based analysis of the most extreme
instances in terms of performance ratio crucial features are identified for both
solver pairings which are indicated to have an influence on solver-specific prob-
lem difficulty. Moreover, we contrasted the classical mean parlQ score with a
respective median version to even increase the challenge of evolving instances
with high solver performance differences.

Future studies will focus on generalizing the results to higher instance sizes
and on designing a more sophisticated fitness function inside the EA to even
increase solver performance differences on the evolved instances.
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