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Abstract
We contribute to the theoretical understanding of randomized search heuristics for 
dynamic problems. We consider the classical vertex coloring problem on graphs 
and investigate the dynamic setting where edges are added to the current graph. We 
then analyze the expected time for randomized search heuristics to recompute high 
quality solutions. The (1+1) Evolutionary Algorithm and RLS operate in a setting 
where the number of colors is bounded and we are minimizing the number of con-
flicts. Iterated local search algorithms use an unbounded color palette and aim to use 
the smallest colors and, consequently, the smallest number of colors. We identify 
classes of bipartite graphs where reoptimization is as hard as or even harder than 
optimization from scratch, i.e., starting with a random initialization. Even adding 
a single edge can lead to hard symmetry problems. However, graph classes that are 
hard for one algorithm turn out to be easy for others. In most cases our bounds show 
that reoptimization is faster than optimizing from scratch. We further show that tai-
loring mutation operators to parts of the graph where changes have occurred can 
significantly reduce the expected reoptimization time. In most settings the expected 
reoptimization time for such tailored algorithms is linear in the number of added 
edges. However, tailored algorithms cannot prevent exponential times in settings 
where the original algorithm is inefficient.
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1 Introduction

Evolutionary algorithms (EAs) and other bio-inspired computing techniques have 
been used for a wide range of complex optimization problems [7, 9]. They are easy 
to apply to a newly given problem and are able to adapt to changing environments. 
This makes them well suited for dealing with dynamic problems where components 
of the given problem change over time [25, 30].

We contribute to the theoretical understanding of evolutionary algorithms in 
dynamically changing environments. Providing a sound theoretical basis on the 
behaviour of these algorithms in changing environments helps to develop better per-
forming algorithms through a deeper understanding of their working principles.

Dynamic problems have been studied in the area of runtime analysis for simple 
algorithms such as randomized local search (RLS) and the classical (1+1) EA. An 
overview on rigorous runtime results for bio-inspired computing techniques in sto-
chastic and dynamic environments can be found in [35]. Early work focused on arti-
ficial problems like a dynamic OneMax problem [12], the function Balance [32] 
where rapid changes can be beneficial, the function MaZe that features an oscillat-
ing behavior [20] and problems involving moving Hamming balls [8]. The investiga-
tions of the (1+1) EA for a dynamic variant of the classical leadingOnes problem 
in [11] reveal that previous optimization progress might (almost) be completely lost 
even if small perturbations of the problem occur. This motivated the introduction of 
a population-based structural diversity optimization approach [11]. The approach is 
able to maintain structural progress by preserving solutions of beneficial structure 
although they might have low fitness after a dynamic change has occurred.

In terms of classical combinatorial optimization problems, prominent problems 
such as single-source-shortest-paths [22], makespan scheduling [24], and the vertex 
cover problem [26, 28, 38] have been investigated in a dynamic setting. Further-
more, the behaviour of evolutionary algorithms on linear functions with dynamic 
constraints has been analyzed in [36, 37] and experimental investigations for the 
knapsack problem with a dynamically changing constraint bound have been carried 
out in [33]. These studies have been extended in [34] to a broad class of problems 
and the performance of an evolutionary multi-objective algorithm has been analyzed 
in terms of its approximation behaviour dependent on the submodularity ratio of the 
considered problem.

We consider graph vertex coloring, a classical NP-hard optimization problem. In 
the context of problem specific approaches, algorithms have been designed to update 
solutions after a dynamic change has happened. Dynamic algorithms have been pro-
posed to maintain proper coloring for graphs with maximum degree at most �,1 with 
the goal of using as few colors as possible while keeping the (amortized) update 
time small [3, 4]. There exist algorithms that aim to perform as few (amortized) ver-
tex recolorings as possible in order to maintain a proper coloring in a dynamic graph 
[2, 39]. There have also been studies of k-list coloring in a dynamic graph such that 

1 In such graphs, there always exist a proper (� + 1)-vertex coloring. Furthermore, such a proper color-
ing can be found in linear time.
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each update corresponds to adding one vertex (together with the incident edges) to 
the graph (e.g. [14]). The related problem of maintaining a coloring with minimal 
total colors in a temporal graph has recently been studied [23]. From a practical 
perspective, incremental algorithms or heuristics have been proposed that update the 
graph coloring by exploring a small number of vertices [29, 42].

Graph coloring has been studied for specific local search and evolutionary algo-
rithms in [13, 40, 41]. Fischer and Wegener [13] studied a problem inspired by the 
Ising model in physics that on bipartite graphs is equivalent to the vertex coloring 
problem. They showed that on cycle graphs the (1+1)  EA and RLS find optimal 
colorings in expected time O(n3) . This bound is tight under a sensible assumption. 
They also showed that crossover can speed up the optimization time by a factor of n. 
Sudholt [40] showed that on complete binary trees the (1+1) EA needs exponen-
tial expected time, whereas a Genetic Algorithm with crossover and fitness sharing 
finds a global optimum in O(n3) expected time. Sudholt and Zarges [41] considered 
a different representation with unbounded-size palettes, where the goal is to use 
small color values as much as possible. They considered iterated local search (ILS) 
algorithms with operators based on so-called Kempe chains that are able to recolor 
large connected parts of the graph, while maintaining feasibility. This approach was 
shown to be efficient on paths and for coloring planar graphs of bounded degree 
(� ≤ 6) with 5 colors. The authors also gave a worst-case graph, a tree, where 
Kempe chains fail, but a new operator called color elimination that performs Kempe 
chains in parallel, succeeds in 2-coloring all bipartite graphs efficiently. Table 1 (top 
rows) gives an overview over previous results.

We revisit these algorithms and graph classes for a dynamic version of the vertex 
coloring problem. We assume that the graph is altered by adding up to T edges to 
it. This may create new conflicts that need to be resolved. Note that deleting edges 
from the graph can never worsen the current coloring, hence we focus on adding 
edges only.2 The assumption that the graph is updated by adding edges is natural 
in many practical scenarios. For example, the web graph is explored gradually by a 
crawler that adds edges as they are discovered; the citation networks (in which nodes 
are research papers and edges indicate the citations between two papers) and col-
laboration networks (in which nodes are scientific researchers and edges correspond 
to collaborations) grow by adding edges. Our goal is to determine the expected 
reoptimization time, that is, the time to rediscover a proper coloring after up to T 
edges have been added, given that the previous graph is properly colored, and how 
this time depends on T and the number of vertices n. Our results are summarized in 
Table 1 (center row in each of the two tables).

We start by considering bipartite graphs in Sect. 3. We find that even adding a sin-
gle edge can create a hard symmetry problem for RLS and the (1+1) EA: expected 
reoptimization times for paths and binary trees are as bad as, or even slightly worse, 

2 In general, the chromatic number of a graph can decrease when removing edges. We focus on graphs 
that can be colored with 2 or 5 colors, respectively. For 2-colorable graphs the chromatic number can 
only decrease if the graph becomes empty. For our results on 5-coloring graphs the true chromatic num-
ber will be irrelevant.
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than the corresponding bounds for optimizing from scratch, i.e. starting with a ran-
dom initialization. In contrast, ILS with Kempe chains or color elimination reop-
timizes these instances efficiently. While ILS with color eliminations reoptimizes 
every bipartite graph in expected time O(

√

Tn log n) or better, ILS with Kempe 
chains needs expected time �(2n∕2) even when connecting a tree with an isolated 
edge. This instance is easy for all other algorithms as they all have reoptimization 

Table 1  Worst-case expected times of tailored and generic algorithms for bounded-size palettes (top) and 
unbounded-size palettes (bottom) for (re-)discovering proper 2-colorings for bipartite graphs and proper 
5-colorings for planar graphs. In the dynamic setting, up to T edges are added to the graph. We use the 
notation log+ T = max{1, log T} . The upper bounds for ILS with color eliminations on general bipartite 
graphs improve to O(n log+ T) for generic ILS and O(T) for tailored ILS if no end point of an added edge 
is neighbored to an end point of another added edge, of if � ≤ 4

Setting Graph class (1+1) EA RLS

Static Paths O(n3) [13] O(n3) [13]
Binary trees exp(�(n)) [40] ∞ Thm 3
Depth-2 star O(n log n) Thm 14 O(n log n) Thm 14
Any bipartite exp(�(n)) [40] ∞ Thm 3

Dynamic (generic algorithms) Paths �(n3) Thm 2 �(n3) Thm 2
Binary trees �(n(n+1)∕4) Thm 3 ∞ Thm 3
Depth-2 star O(n log+ T) Thm 14 O(n log+ T) Thm 14
Any bipartite �(n(n+1)∕4) Thm 3 ∞ Thm 3

Dynamic (tailored algorithms) Paths O(n2) Thm 17 O(n2 log+ T) Thm 17
Binary trees �(n(n−3)∕4) Thm 22 ∞ Thm 22
Depth-2 star O(log+ T) Thm 18 O(T) Thm 18
Any bipartite �(n(n−3)∕4) Thm 22 ∞ Thm 22

Setting Graph class ILS+Kempe Chains ILS+Color Eliminations

Static Paths O(n) [41] O(n log n) Thm 4
Binary trees O(n log n) Thm 5 O(n log n) Thm 5
Depth-2 star exp(�(n)) [41] O(n2 log n) [41]
Any bipartite exp(�(n)) [41] O(n2 log n) [41]
Planar, � ≤ 6 O(n log n) [41] O(n log n) Thm 15

Dynamic (generic algorithms) Paths O(n) [41] O(n log+ T) Thm 4
Binary trees O(n log+ T) Thm 5 O(n log+ T) Thm 5
Depth-2 star �(2n∕2) Thm 11 O(n log+ T) Thm 13
Any bipartite �(2n∕2) Thm 11 O(min{

√

T ,� }n log n) Thm 9
Planar, � ≤ 6 O(n log+ T) Thm 15 O(n log+ T) Thm 15

Dynamic (tailored algorithms) Paths O(T) Thm 19 O(T) Thm 20
Binary trees O(T) Thm 19 O(T) Thm 20
Depth-2 star �(2n∕2) Thm 23 O(T) Thm 20
Any bipartite �(2n∕2) Thm 23 O(min{

√

T ,� }n) Thm 20
Planar, � ≤ 6 O(T) Thm 21 O(T) Thm 21
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time O(n log+ T) (where log+ T = max{1, logT} is used to avoid expressions involv-
ing a factor of logT  becoming 0 when T = 1).

In Sect. 4 we show that ILS with either operator is also able to efficiently redis-
cover a 5-coloring for planar graphs with maximum degree � ≤ 6 in expected time 
O(n log+ T).

In Sect. 5 we design mutation operators that focus on the areas in the graph where 
a dynamic change has happened. We call these algorithms tailored algorithms and 
refer to the original algorithms as generic algorithms. We show that tailored algo-
rithms can reoptimize most graph classes in time O(T) after inserting T edges, how-
ever they cannot prevent exponential times in cases where the corresponding generic 
algorithm is inefficient. All our results are shown in Table 1 (bottom rows).

Section  2 defines the considered algorithms and the setting of reoptimization. 
It briefly reviews the computational complexity of executing one iteration of each 
algorithm as well as related work on problem-specific algorithms.

A preliminary version with parts of the results was published in [6]. While results 
for tailored algorithms were limited to adding one edge, results in this extension 
hold for adding up to T edges. This required a major redesign of the tailored algo-
rithms and entirely new proofs for some graph classes. We also added a new struc-
tural insight on ILS: Lemma 7 establishes that the number of vertices colored with 
one of the two largest possible colors, � + 1 and � , cannot increase over time. This 
simplifies several analyses, improves our previous upper bound for ILS on binary 
trees from O(n log n) to O(n log+ T) , and generalises the latter result to larger classes 
of graphs (see Theorem 10). We also improved our exponential lower bound for the 
generic and tailored (1+1) EA on binary trees by a factor of n and added a tight 
upper bound (see Theorems 3 and 22).

2  Preliminaries

Let G = (V ,E) denote an undirected graph with vertices V and edges E. We denote 
by n ∶= |V| the number of vertices in G. We let � denote the maximum degree of the 
graph G. A vertex coloring of G is an assignment c ∶ V → {1,… , n} of color values 
to the vertices of G. Let deg(v) be the degree of a vertex v and c(v) be its color in 
the current coloring. Every edge {u, v} ∈ E where c(v) = c(u) is called a conflict. A 
color is called free for a vertex v ∈ V  if it is not assigned to any neighbor of v. The 
chromatic number �(G) is the minimum number of colors that allows for a conflict-
free coloring. A coloring is called proper is there is no conflicting edge.

2.1  Algorithms with Bounded‑Size Palette

In this representation, the total number of colors is fixed, i.e., the color palette has 
fixed size k ≤ n . The search space is {1,… , k}n and the objective function is to mini-
mize the number of conflicts.

We assume that in the static setting all algorithms are initialized uniformly at ran-
dom. In a dynamic setting we assume that a proper k-coloring x has been found. 
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Then the graph is changed dynamically and x becomes an initial solution for the 
considered algorithms.

We define the dynamic (1+1)  EA for this search space as follows (see Algo-
rithm 1). Assume that the current solution is x. We consider all algorithms as infinite 
processes as we are mainly interested in the expected number of iterations until good 
solutions are found or rediscovered. 

We also define randomized local search (RLS; see Algorithm 2) as a variant of 
the (1+1) EA where exactly one component is mutated. 

2.2  Algorithms with Unbounded‑Size Palette

In this representation, the color palette size is sufficiently large (say has size n). Our 
goal is to maintain a proper vertex coloring and to reward colorings that color many 
vertices with small color values. The motivation for focusing on small color values 
is to introduce a direction for the search process to use a small set of preferred colors 
and the hope is that large color values eventually become obsolete. We use the selec-
tion operator from [41, Definition 1] that defines a color-occurrence vector counting 
the number of vertices colored with given colors and tries to evolve a color-occur-
rence vector that is as close to optimum as possible.

Definition 1 [41] For x, y we say that x is better than y and write x ⪰ y iff

– x has fewer conflicting edges than y or
– x and y have an equal number of conflicting edges and their color frequencies are 

lexicographically ordered as follows. Let ni(x) be the number of i-colored verti-
ces in x, then ni(x) < ni(y) for the largest index i with ni(x) ≠ ni(y).

As remarked in [41], decreasing the number of vertices with the currently highest 
color (and not introducing yet a higher color) yields an improvement. If this number 
decreases to 0, then the total number of colors has decreased.
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We use the same local search operator as in [41] called Grundy 
local search (Algorithm  3). A vertex v is called a Grundy vertex if v 
has the smallest color value not taken by any of its neighbors, formally 
c(v) = min{i ∈ {1,… , n} ∣ ∀w ∈ N(v) ∶ c(w) ≠ i} , where N(v) denotes the neigh-
borhood of v. A coloring is called a Grundy coloring if all vertices are Grundy 
vertices [43]. Note that a Grundy coloring is always proper. 

Algorithm 3 Grundy local search [15]
1: while the current coloring is not a Grundy coloring do
2: Choose a non-Grundy vertex v.
3: Set c(v) := min{i ∈ {1, . . . , n} | ∀w ∈ N (v) : c(w) = i}.

The analysis in [15] reveals that one step of the Grundy local search can only 
increase the color of a vertex if there is a conflict; otherwise the color of verti-
ces can only decrease. Sudholt and Zarges [41] point out that the application of 
Grundy local search can never worsen a coloring. If y is the outcome of Grundy 
local search applied to x then y ⪰ x . If x contains a non-Grundy node then y is 
strictly better, i.e., y ⪰ x and x  y.

We also introduce the Grundy number � (G) of a graph G (also called first-fit 
chromatic number [1]) as the maximum number of colors used in any Grundy 
coloring. Every application of Grundy local search produces a proper coloring 
with color values at most � .

We consider the Kempe chain mutation operator defined in [41], which is 
based on so-called Kempe chain [18] moves. This mutation exchanges two colors 
in a connected subgraph. By Hij we denote the set of all vertices colored  i or  j 
in G. Then Hj(v) is the connected component of the subgraph induced by Hc(v)j 
that contains v. 

Algorithm 4 Kempe chain [41]
1: Choose v ∈ V and j ∈ {1, . . . ,deg(v) + 1} uniformly at random.
2: Let i := c(v)
3: for all u ∈ Hj(v) do
4: if c(u) = i then c(u) := j else c(u) := i.

The Kempe chain operator (Algorithm  4) is applied to a vertex v and it 
exchanges the color of  v (say i) with a color  j. We restrict the choice of  j to the 
set {1,… , deg(v) + 1} since larger colors will be replaced in the following Grundy 
local search. In the connected component Hj(v) the colors i and j of all vertices are 
exchanged. As no conflict within Hj(v) is created and Hj(v) is not neighbored to any 
vertex colored i or j, Kempe chains preserve feasibility.

An important point to note is that, when the current largest color is cmax , Kempe 
chains are often most usefully applied to the neighborhood of a cmax-colored ver-
tex v. This can lead to a color in v’s neighborhood becoming a free color, and then 
the following Grundy local search will decrease the color of v. In contrast, applying 
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a Kempe chain to v directly will spread color cmax to other parts of the graph, which 
might not be helpful.

Sudholt and Zarges [41] introduced a mutation operator called a color elimina-
tion (Algorithm 5): it tries to eliminate a smaller color  i in the neighborhood of a 
vertex v in one shot by trying to recolor all these vertices with another color j using 
parallel Kempe chains. Let v1,… , v

�
 be all i-colored neighbors of v, for some num-

ber � ≥ 1 , then a Kempe chain move is applied to the union of the respective sub-
graphs, Hj(v1) ∪⋯ ∪ Hj(v𝓁) . 

Algorithm 5 Color elimination [41]
1: Choose v ∈ V uniformly at random.
2: if c(v) ≥ 3 then
3: Choose i, j ∈ {1, . . . , c(v) − 1}, i = j, uniformly at random.
4: Let v1, . . . , v enumerate all i-colored neighbors of v.
5: for all u ∈ Hj(v1) ∪ · · · ∪Hj(v ) do
6: if c(u) = i then c(u) := j else c(u) := i.

Iterated local search (ILS, Algorithm  6) repeatedly uses one of the aforemen-
tioned two mutations followed by Grundy local search. The mutation operator is 
not specified yet, but regarded as a black box. In the initialization every vertex v 
receives an arbitrary color, which is then turned into a Grundy coloring by Grundy 
local search. 

Algorithm 6 Iterated local search (ILS) (x)
1: Replace x by the result of Grundy local search applied to x.
2: repeat forever
3: Let y be the result of a mutation operator applied to x.
4: Let z be the outcome of Grundy Local Search applied to y.
5: If z x then x := z.

2.3  Reoptimization Times

We consider the batch-update model for dynamic graph coloring. That is, given a 
graph G� = (V ,E�) and its proper coloring, we would like to find a proper coloring of 
G = (V ,E) which is obtained after a batch of up to3 T edge insertions to G′ . We are 
interested in the reoptimization time, i.e., the number of iterations it takes to find a 
proper coloring of the current graph G, given a proper coloring of G′ . How does the 
expected reoptimization time depend on n and T? More precisely, we consider the 
worst case reoptimization time to be the reoptimization time when considering the 
worst possible way of inserting up to T edges into the graph.

3 We say “up to T edges” instead of “exactly T edges” as some negative results are easier to prove if just 
one edge is added.
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Note that a bound for the reoptimization time can also yield a bound on the opti-
mization time in the static setting for a graph G = (V ,E) . This is because the static 
setting can be considered as a dynamic setting where we start with n isolated verti-
ces and then add all T = |E| edges to the graph.

We point out that while we measure the number of iterations for all algorithms, 
the computational effort to execute one iteration may differ significantly between 
representations. RLS and (1+1)  EA on bounded-size palettes only make small 
changes to the graph (in expectation). For unbounded-size palettes, larger changes in 
the graph are possible. This presents a significant advantage for escaping from local 
optima and advancing towards the optimum, but it takes more computational effort. 
The following theorem gives bounds on the computational complexity of execut-
ing one iteration of each algorithm in terms of elementary operations on a RAM 
machine.

Theorem 1 Consider RLS, (1+1) EA and ILS on a connected graph G = (V ,E) with 
|V| ≥ 2 . Then

1. one iteration of RLS can be executed in expected time O(|E|/|V|),
2. one iteration of the (1+1) EA can be executed in expected time O(|E|/|V|), and
3. one iteration of ILS with Kempe chains or color eliminations can be executed in 

time O(|E|).

In order to keep the paper streamlined, a proof for this theorem is given in 
Appendix A. Note that, for graphs with |E| = O(|V|) , one iteration of RLS and the 
(1+1) EA can be executed in expected time O(1), whereas one iteration of ILS can 
be executed in expected time O(|V|) = O(n) . For all connected graphs with at least 
two vertices, the upper bound for ILS is by a factor of O(n) larger than the bounds 
for RLS and the (1+1) EA.

To be clear: Theorem 1 is used to provide further context to the algorithms stud-
ied here. In the following theoretical results we will use the number of iterations as 
performance measure as customary in runtime analysis of randomized search heu-
ristics and for consistency with previous work.

2.4  Related work on (dynamic) graph coloring in the context of problem specific 
approaches

We remark that the coloring problems studied in this work are easy from a computa-
tional complexity point of view. A simple breadth-first search can be used to check 
in time O(|V| + |E|) whether a graph G = (V ,E) is bipartite, i.e., 2-colorable, or not, 
and to find a proper 2-coloring if it is. Planar graphs can be colored with 4 colors 
(that is, even less than 5 colors) in time O(|V|2) [31]. The algorithm is quite complex 
and based on the proof of the famous Four Color Theorem.

For dynamically changing graphs, a number of dynamic graph coloring algo-
rithms have been proposed. A general lower bound limits their efficiency: for any 
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dynamic algorithm A that maintains a c-coloring of a graph, there exists a dynamic 
forest such that A must recolor at least �(|V|2∕c(c−1)) vertices per update on aver-
age, for any c ≥ 2 [2]. For c = 2 , this gives a lower bound of �(|V|) . By a result in 
[17] (which improves upon [39]), one can maintain an O(log n)-coloring of a pla-
nar graph with amortized polylogarithmic update time. There is a line of research 
on dynamically maintaining a (� + 1)-coloring of a graph with maximum degree at 
most � [4, 5, 16] and the current best algorithm has O(1) update time [5, 16]. In our 
setting of planar graphs with � ≤ 6 , this would only guarantee a proper coloring 
with 7 colors, though.

3  Reoptimization Times on Bipartite Graphs

We start off by considering bipartite graphs, i.e. 2-colorable graphs. For the 
bounded-size palette, we assume that only 2 colors are being used, i.e. k = 2 . We 
also consider unbounded-size palettes where the aim is to eliminate all colors larger 
than 2 from the graph.

3.1  Paths and Binary Trees

We first show that even adding a single edge can result in difficult symmetry prob-
lems. This can happen if two subgraphs are connected by a new edge, and then the 
coloring in one subgraph has to be inverted to find the optimum. Two examples for 
this are paths and binary trees.

Theorem  2 If adding up to T edges completes an n-vertex path, the worst-case 
expected time for the (1+1) EA and RLS to rediscover a proper 2-coloring is �(n3).

Proof The claim essentially follows from the proofs of Theorems 3 and 5 in [13] 
where the authors investigate an equivalent problem on cycle graphs. Hence, we just 
sketch the idea here. Imagine we link two properly colored paths of length n/2 each 
with an edge (u, v) which introduces a single conflict. The conflict splits the path 
into two paths that are properly colored and joined by a conflicting edge. Consider 
the length of the shortest properly colored path. As argued in [13], both RLS and 
(1+1)  EA can either increase or decrease this length in fitness-neutral operations 
like recoloring one of the vertices involved in the conflict. If it has decreased to 1, 
the conflict has been propagated down to a leaf node where a single bit flip can get 
rid of it. Fischer and Wegener calculate bounds for the expected number of steps 
until this number reaches its minimum 1. This is achieved by estimating the number 
of so-called relevant steps, which either increase or decrease the length of the short-
est properly colored path. The probability for a relevant step is �(1∕n) . The expected 
number of relevant steps is �(n2) since we have a fair random walk on states up to 
n/2. In summary, this results in a runtime bound of �(n3).

Fischer and Wegener [13] give an upper bound of O(n3) that holds for an arbitrary 
initialization, hence the upper bound holds for arbitrary values of T.   ◻
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Theorem 3 If adding an edge completes an n-vertex complete binary tree, the worst-
case expected time for the (1+1) EA to rediscover a proper 2-coloring is �

(

n(n+1)∕4
)

 . 
For both static and dynamic settings, RLS is unable to find a proper 2-coloring in 
the worst case.

Proof The proof uses and refines arguments from [40]. Let e = {r, v} be the added 
edge with r being the root of the n-vertex complete binary tree. If c(r) ≠ c(v) we 
are done and the coloring is already a proper 2-coloring. Hence, we assume that 
c(r) = c(v) and there is exactly one conflict. This situation is a worst-case situation 
in vertex-coloring of complete binary trees, since many vertices must be recolored in 
the same mutation to produce an accepted candidate solution (see Fig. 1 (left)). Let 
OPT be the set of the two possible proper colorings and let Ai , for 0 ≤ i ≤ log(n) − 1 
be the set of colorings with one conflict such that the parent vertex of the conflicting 
edge has (graph) distance i to the root. We have 

∑log(n)−1

i=0
�Ai� = 2n − 2 since we can 

choose the position of the conflicting edge among n − 1 edges and there are two pos-
sible colors for its vertices. By the same argument, |A0| = 4 and |A1| = 8.

Starting with a coloring x ∈ A0 , the probability of reaching OPT in one mutation 
is at most n−(n−1)∕2 + n−(n+1)∕2 = O(n−(n−1)∕2) since all vertices on either side of the 
conflicting edge must be recolored in one mutation. The probability of reaching A1 
in one mutation is �(n−(n+1)∕4) since a sufficient condition is to flip v and all the ver-
tices in one of v’s subtrees (see Fig. 1 (left)). Since each subtree of v has (n − 3)∕4 
vertices, this means flipping 1 + (n − 3)∕4 = (n + 1)∕4 many vertices. This prob-
ability is also O(n−(n+1)∕4) since the only other way to create some coloring in A1 is 
to flip r, the sibling of v (that we call w), and one of w’s subtrees. The probability 
to reach any solution in 

⋃log(n)−1

i=2
Ai is O(n−(n+1)∕4) as well since more than (n + 1)∕4 

vertices would have to flip and there are 2n − 2 − |A0| − |A1| = 2n − 14 solutions in 
⋃log(n)−1

i=2
Ai . This implies the claimed lower bound as the probability to escape from 

A0 in one mutation is �(n−(n+1)∕4).
To show the claimed upper bound, we argue that in �(n(n+1)∕4) expected time 

we do escape from A0 . If OPT is reached, we are done. Hence, we assume that 
⋃log(n)−1

i=1
Ai is reached. For each coloring in this set, there is a proper coloring within 

Hamming distance at most (n − 3)∕4 since, if {u, v} denotes the conflicting edge 
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Fig. 1  A complete binary tree with a worst-case coloring in A
0
 (left) and a coloring in A

1
 (right). Flip-

ping the dotted vertices is sufficient to make a transition from A
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1
 and from A

1
 to a proper coloring, 

respectively
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with u being the parent of v, it is sufficient to recolor the subtree at v and this subtree 
has at most (n − 3)∕4 vertices (see Fig. 1 (right)). Thus, the expected time to either 
reach OPT or to go back to A0 is O(n(n−3)∕4) . Since at least (n + 1)∕4 vertices would 
have to flip to go back to A0 (and |A0| = O(1) ), the conditional probability to go 
back to A0 is at most O(1/n). If this happens, we repeat the above arguments; this 
clearly does not change the asymptotic runtime and we have shown an upper bound 
of O(n(n+1)∕4).

It is obvious from the above that RLS is unable to leave A0 and hence it fails in 
both static and dynamic settings when starting with a worst-case initialization.   ◻

In the above two examples, the reoptimization time is at least as large as the opti-
mization time from scratch. In fact, our dynamic setting even allows us to create a 
worst-case initial coloring that might not typically occur with random initialization. 
Theorem 2 gives a rigorous lower bound of order n3 as after adding an edge connect-
ing two paths of n/2 vertices each, we start the last “fitness level” with a worst-case 
initial setup. [13] were only able to show a lower bound under additional assump-
tions. Also in [40] the probability of reaching the worst-case situation described in 
Theorem  3 was very crudely bounded from below by �(2−n) . Our lower bounds 
for dynamic settings are hence a bit tighter and/or more rigorous than those for the 
static setting.

The reason for the large reoptimization times in the above cases is because for the 
(1+1) EA and RLS mutations occur locally, and they struggle in solving symmetry 
problems where large parts of the graph need to be recolored. Mutation operators in 
ILS like Kempe chains and color eliminations operate more globally, and can easily 
deal with the above settings.

Theorem 4 Consider a dynamic graph that is a path after a batch of up to T edge 
insertions. The expected time for ILS with Kempe chains to rediscover a proper 
2-coloring on paths is O(n).

Proof The statement about paths follows from [41, Theorem 1] as the expected time 
to 2-color a path is O(n) in the static setting. (It is easy to see that the proof holds for 
arbitrary initial colorings.)   ◻

Theorem 5 Consider a dynamic graph that is a binary tree after a batch of up to T 
edge insertions. The expected time for ILS with either Kempe chains or color elimi-
nations to rediscover a proper 2-coloring or to find a proper 2-coloring in the static 
setting (where T = n − 1) is O(n log+ T).

The upper bound of O(n log+ T) is an improvement over the bound O(n log n) 
from the conference version of this paper [6, Theorem 3.3]. The proof uses the fol-
lowing structural insights that apply to all graphs and will also prove useful in the 
analysis of planar graphs in Sect.  4. By the design of the selection operator, the 
number of (� + 1)-colored vertices is non-increasing over time. We shall show that 
also the number of vertices colored � or � + 1 is non-increasing.
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The following lemma shows that a Kempe chain operation or color elimination 
can only increase the number of �-colored vertices by at most 1.

Lemma 6 Consider a Grundy-colored graph with maximum degree � . Then every 
Kempe chain operation and every color elimination can only increase the number of 
�-colored vertices by at most 1.

Proof We first consider Kempe chains and distinguish between two cases: the 
Kempe chain involves colors � and � + 1 and the case that it involves colors � 
and a smaller color c < 𝛥 . Kempe chains involving two colors other than � cannot 
change the number of �-colored vertices (albeit this may still happen in a subsequent 
Grundy local search, if (� + 1)-colored vertices are recolored with color � ). We start 
with the case of colors � and � + 1.

Assume that there exists a vertex v that is being recolored from � + 1 to � in the 
Kempe chain (if no such vertex exists, the claim holds trivially). Since the coloring 
is a Grundy coloring, v must have vertices of all colors in {1,… ,�} in its neighbor-
hood, and there can only be one vertex of each color (owing to the degree bound � ). 
Let w be the �-colored vertex and note that w must have all colors from 1 to � − 1 in 
its neighborhood. Thus, w must have neighbors w1,… ,w�−1 such that wi is colored i. 
Since w also has v as its neighbor, w cannot have any further neighbors apart from 
v,w1,… ,w�−1 ; in particularly, w cannot have any further (� + 1)-colored vertices 
as neighbors. Hence the subgraph H�(�+1) induced by vertices colored � or � + 1 
contains {v,w} as a connected component and a Kempe chain on this component 
will simply swap the colors of v and w without increasing the number of �-colored 
vertices.

Now assume that the other color is c < 𝛥 . We show that in the subgraph Hc� 
induced by vertices colored c or � , the number of c-colored vertices in every con-
nected component of Hc� is at most 1 larger than the number of �-colored vertices. 
This implies the claim since a Kempe chain operation swaps colors c and � in one 
connected component of Hc�.

Every �-colored vertex w needs to have colors {1,… ,� − 1} in its neighborhood 
since the coloring is a Grundy coloring. Since the maximum degree is � , w can have 
at most two c-colored neighbors.

Consider a connected component of Hc� that contains a c-colored vertex v (if no 
such vertex exists, the claim holds trivially). Imagine the breadth-first search (BFS) 
tree generated by running BFS in Hc� starting at c. Note that colors are alternating at 
different depths of the BFS tree, with �-colored vertices at odd depths and c-colored 
vertices at even depths from the root. For odd depths d, all �-colored vertices can 
only have 1 c-colored vertex at depth d + 1 since they are already connected to one 
c-colored vertex at depth d − 1 . Hence there are at least as many �-colored vertices 
at depth d as c-colored vertices at depth d + 1 . Using this argument for all odd val-
ues of d and noting that the root vertex v is c-colored proves the claim.

For color eliminations, recall that the parameters are two colors that are smaller 
than the color of the selected vertex. So a color � can only be involved if the selected 
vertex v has color � + 1 . Since every color value {1,… ,�} appears exactly once in 
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the neighborhood of v, a color elimination with parameters i,  j boils down to one 
Kempe chain with colors i and j. Then the claim follows from the statement on 
Kempe chains.   ◻

Lemma  6 implies that the number of vertices colored � or � + 1 can never 
increase in an iteration of ILS.

Lemma 7 On every Grundy-colored graph, an iteration of ILS with either Kempe 
chains or color eliminations does not increase the number of vertices colored either 
� or � + 1.

Proof The number of (� + 1)-colored vertices is non-increasing by design of the 
selection operator. Moreover, the number of �-colored vertices can only increase if 
the number of (� + 1)-colored vertices decreases at the same time. If there are no 
(� + 1)-colored vertices, the number of �-colored vertices is non-increasing. Hence 
we only need to consider the case where there is at least one (� + 1)-colored vertex.

The proof of Lemma 6 revealed that every Kempe chain or color elimination can 
only increase the number of �-colored vertices by 1. Moreover, this can only happen 
if a Kempe chain affects a connected component C of Hc� , for a color c < 𝛥 , such 
that C has one more c-colored vertex than �-colored vertices. For this operation to 
be accepted by selection, the following Grundy local search must reduce the number 
of (� + 1)-colored vertices by at least 1.

Consider one (� + 1)-colored vertex  v whose color decreases. If the new color 
is smaller than � , v does not increase the number of �-colored vertices. If its new 
color is � , then we claim that there must exist another vertex w ∉ C whose color 
decreases from � to a smaller color. Note that v can only be recolored � if � becomes 
a free color for v, that is, the unique �-colored neighbor w of v is being recolored 
(recall that all colors {1,… ,�} appear once in the neighborhood of v). The proof 
of Lemma 6 showed that w ∉ C as otherwise w would have more than � neighbors. 
It also showed that v and w cannot have any edges to other vertices colored � or 
� + 1 . Hence if there are � > 1 vertices v1,… , v

�
 whose color decreases from � + 1 

to � then there are � vertices w1,… ,w
�
∈ G ⧵ C whose color decreases from � to a 

smaller color. This implies the claim.   ◻

When adding edges in the unbounded-size palette setting, Grundy local search 
will repair any conflicts introduced in this way by increasing colors of vertices 
incident to conflicts. The following lemma states that the number of colors being 
increased is bounded by the number of inserted edges.

Lemma 8 When inserting at most T edges into a graph that is Grundy colored, the 
following Grundy local search will only recolor up to T vertices.

Proof As shown in [15, Lemma 3], one step of the Grundy local search can only 
increase the color of a vertex if it is involved in a conflict. Otherwise, the color of 
vertices can only decrease. If a vertex v is involved in a conflict and subsequently 
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assigned the smallest free color, all conflicts at v are resolved and v will never be 
touched again during Grundy local search [15, Lemma  4] since further steps of 
the Grundy local search cannot create new conflicts. Hence after at most T steps, 
Grundy local search stops with a Grundy coloring.   ◻

With the above lemmas, we are ready to prove Theorem 5.

Proof of Theorem 5 The Grundy number of binary trees is at most � ≤ � + 1 ≤ 4 . 
By Lemma 8, the number of vertices colored 3 or 4 is at most T.

By design of our selection operator, the number of 4-colored vertices is non-
increasing over time. For every 4-colored vertex  v there must be a Kempe chain 
operation recoloring a neighboring vertex whose color only appears once in 
the neighborhood of  v. If there are i 4-colored vertices, the probability of reduc-
ing this number is �(i∕n) and the expected time for color  4 to disappear is 
O(n) ⋅

∑T

i=1
1∕i = O(n log+ T).

Since the number of vertices colored 3 or 4 cannot increase by Lemma 7, once all 
4-colored vertices are eliminated, there will be at most T 3-colored vertices, and the 
time to eliminate these is bounded by O(n log+ T) by the same arguments as above.  
 ◻

3.2  A Bound for General Bipartite Graphs

[41] showed that ILS with color eliminations can color every bipartite graph effi-
ciently, in expected O(n2 log n) iterations [41, Theorem  3]. The main idea behind 
this analysis was to show that the algorithm can eliminate the highest color from 
the graph by applying color eliminations to all such vertices. The expected time 
to eliminate the highest color is O(n log n) , and we only have to eliminate at most 
O(n) colors. In fact, the last argument can be improved by considering that in every 
Grundy coloring of a graph G the largest color is at most � (G) . This yields an upper 
bound of O(� (G)n log n) for both static and dynamic settings.

The following result gives an additional bound of O(
√

Tn log n) , showing that the 
number T of added edges can have a sublinear impact on the expected reoptimiza-
tion time.

Theorem 9 Consider a dynamic graph that is bipartite after a batch of up to T edge 
insertions. Let �  be the Grundy number of the resulting graph. Then ILS with color 
eliminations re-discovers a proper 2-coloring in expected O(min{

√

T ,� }n log n) 
iterations.

Proof Consider the connected components of the original graph. If an edge is 
added that runs within one connected component, it cannot create a conflict. This 
is because the connected component is properly 2-colored, with all vertices of the 
same color belonging to the same set of the bipartition. Since the graph is bipartite 
after edge insertions, the new edge must connect two vertices of different colors. 
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Hence added edges can only create a conflict if they connect two different connected 
components that are colored inversely to each other.

Consider the subgraph induced by the added edges that are conflicting, and pick a 
connected component C in this subgraph. Note that all vertices in C have the same 
color c ∈ {1, 2} before Grundy local search is applied. Now Grundy local search 
will fix these conflicts by increasing the colors of vertices in C. We bound the value 
of the largest color cmax used and first consider the case where the largest color is 
cmax ≥ 4 . For Grundy local search to assign a color cmax ≥ 4 to a vertex v ∈ C , all 
colors 1,… , cmax − 1 must occur in the neighborhood of v in the new graph. In par-
ticular, C must contain vertices v3, v4,… , vcmax−1

 respectively colored 3,… , cmax − 1 
that are neighbored to v. This implies that cmax − 3 edges incident to v, connecting v 
to a smaller color, must have been added during the dynamic change. Applying the 
same argument to v3, v4,… , vcmax−1

 yields that there must be at least 
∑cmax−3

j=1
j = (cmax − 3)(cmax − 2)∕2 inserted edges in  C. Thus 

(cmax − 3)(cmax − 2)∕2 ≤ T  , which implies (cmax − 3)2 ≤ 2T  and this is equivalent to 
cmax ≤

√

2T + 3 . Also cmax ≤ �  by definition of the Grundy number.
Now we can argue as in [41, Theorem  3]: the largest color can be eliminated 

from any bipartite graph in expected time O(n log n) . (Note that these color elimi-
nations can increase the number of vertices colored with large colors, so long as 
the number of the vertices with the largest color decreases.) Since at most cmax − 2 
colors have to be eliminated, a bound of O(cmaxn log n) follows. Plugging in 
cmax = O(min{

√

T ,� }) completes the proof.
If Grundy local search uses a largest color of cmax ≤ 3 an O(n log n) bound follows 

as for cmax = 3 only one color has to be eliminated and cmax ≤ 2 implies that a proper 
coloring has already been found.   ◻

For graphs with Grundy number � ≤ 4 , which includes binary trees, star 
graphs, paths and cycles, the bound improves to O(n log+ T).

Theorem  10 Consider a dynamic graph that is bipartite after a batch of up to T 
edge insertions. If no end point of an added edge is neighbored to an end point of 
another added edge, or if � ≤ 4 , the expected time to re-discover a proper 2-color-
ing is O(n log+ T) . If only one conflicting edge is added, the expected time is �(n).

Proof If no end point of an added edge is neighbored to an end point of another 
added edge, Grundy local search will only create colors up to  3. This is because 
Grundy local search will only increase the color of end points of added edges, and 
the condition implies that the colors of neighbors of all end points will remain fixed. 
Hence, Grundy local search will recolor vertices independently from each other. 
If � ≤ 4 , the largest color value is 4. Lemma 7 states that the number of vertices 
colored 3 or 4 cannot increase.

Following [41, Theorem 3], while there are i vertices colored 4, a color elimina-
tion choosing such a vertex will lead to a smaller free color, reducing the number of 
4-colored vertices. The expected time for this to happen is at most n/i, hence the total 
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expected time to eliminate all color-4 vertices is at most 
∑T

i=1
n∕i = O(n log+ T) . 

The same argument then applies to all 3-colored vertices.
If only one conflicting edge is inserted ( T = 1 ) then there will be one 3-colored 

vertex v after Grundy local search, and a proper 2-coloring is obtained by applying a 
color elimination to v. The expected waiting time for choosing vertex v is �(n) .   ◻

3.3  A Worst‑Case Graph for Kempe Chains

While ILS with color eliminations efficiently reoptimizes all bipartite graphs, for 
ILS with Kempe chains there are bipartite graphs where even adding a single edge 
connecting a tree with an isolated edge can lead to exponential times.

Theorem  11 For every n ≡ 1 mod 4 there is a forest Tn with n vertices such that 
for every feasible 2-coloring ILS with Kempe chains needs �(2n∕2) generations in 
expectation to re-discover a feasible 2-coloring after adding an edge.

Proof Choose Tn as the union of an isolated edge {u, v} where c(u) = 2 and c(v) = 1 
and a tree where the root r has N − 1 ∶= (n − 3)∕2 children and every child has 
exactly one leaf (cf. Fig. 2). This graph was also used in [41] as an example where 
ILS with Kempe chains fail in a static setting. Since n ≡ 1 mod 4 , N is an even num-
ber. Every feasible 2-coloring will color the root and the leaves in the same color and 
the root’s children in the remaining color. Assume the root and leaves are colored 2 
as the other case is symmetric. Now add an edge {r, u} to the graph. This creates a 
star of depth 2 (termed the depth-2 star in the following) where the root is the center 
and the root now has N children.

This creates a conflict at {r, u} that is being resolved by recoloring one of these 
vertices to color 3 in the next Grundy local search. With probability 1/2, this is the 
root r.

From this situation, any Kempe chain affecting any vertex in V ⧵ {r} can swap 
the colors on an edge incident to a leaf. Let X0,X1,… denote the random number of 
leaves colored 1, starting with X0 = 1 . We only consider steps in which this number 
is changed; note that the probability of such a change is �(1) as every Kempe chain 
on any vertex except for the root changes Xt if an appropriate color value is cho-
sen. There are N ∶= (n − 1)∕2 leaves and the number of 1-colored leaves performs 
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Fig. 2  Depth-2 star with n = 13 vertices. The dashed line indicates the added edge. Left: coloring with a 
bounded-size palette, right: coloring after Grundy local search with an unbounded-size palette
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a random walk biased towards N/2: Pr
(

Xt+1 = Xt + 1 ∣ Xt

)

= (N − Xt)∕N and 
Pr
(

Xt+1 = Xt − 1 ∣ Xt

)

= Xt∕N . This process is known as the Ehrenfest urn model: 
imagine two urns labelled 1 and 2 that together contain N balls. In each step, we pick 
a ball uniformly at random and move it to the other urn. If Xt denotes the number of 
balls in urn 1 at time t, we obtain the above transition probabilities.4

When Xt ∈ {0,N} then a proper 2-coloring has been found. As long as 
Xt ∈ {2,… ,N − 2} , all Kempe chain moves involving the root will be rejected as 
the number of 3-colored vertices would increase. While Xt ∈ {1,N − 1} a Kempe 
chain move recoloring the root with the minority color will be accepted. This has 
probability 1∕n ⋅ 1∕(N − 1) = �(1∕N2) (as the color is chosen uniformly from 
{1,… , deg(r) + 1} ) and then the following Grundy local search will produce a 
proper 2-coloring. Also considering possible transitions to neighbouring states 0 
or N, while Xt ∈ {1,N − 1} the conditional probability that a proper 2-coloring is 
found before moving to a state Xt ∈ {2,N − 2} is �(1∕N).

For the Ehrenfest model it is known that the expected time to return to an initial 
state of 1 is 1!(N − 1)!∕N! ⋅ 2N = 2N∕N [19, equation (66)]. It is easy to show that 
this time remains in �(2N∕N) when considering N − 1 as a symmetric target state, 
and when conditioning on traversing states {2,… ,N − 2} . A rigorous proof for this 
statement is given in the Lemma 12 stated after this proof.

Along with the above arguments, this means that such a return in expectation 
happens �(N) times before a proper 2-coloring is found. This yields a total expecta-
tion of �(2N) = �(2n∕2) .   ◻

Lemma 12 Consider the Ehrenfest urn model with N balls spread across two urns 
1 and 2, in which at each step a ball is picked uniformly at random and moved to 
the other urn. Describing the current state as the number of balls in urn 1, when 
starting in either state 1 or state N − 1 , the expected time to return to a state from 
{1,N − 1} via states in {2,… ,N − 2} is �(2N∕N).

Proof Let Ta→b denote the first-passage time from a state  a to a state  b and Ta→B 
for a set B denote the first-passage time from a to any state in B. For the Ehrenfest 
model it is known that the expected time to return to a state of 1 from a state of 1 
is E

(

T1→1

)

= 1!(N − 1)!∕N! ⋅ 2N = 2N∕N [19, equation (66)]. The Ehrenfest model 
starting in state 1 can return to state 1 either via state 0 or larger states. Since the for-
mer takes exactly 2 steps, the expected return time via larger states is also �(2N∕N) 
by the law of total expectation.

From state N/2, by symmetry, there are equal probabilities of reaching state 1 or 
state N − 1 when we first reach a state from {1,N − 1} . If state N − 1 is reached, the 
model needs to return to N/2 and move from N/2 to 1 in order to reach state 1. This 
leads to the recurrence

4 This simple model was originally proposed to describe the process of substance exchange between two 
bordering containers of equal size which are separated by a permeable membrane. Consider N particles 
spread across the containers and denote by X

t
 the number of particles in the left container w. l. o. g. at 

time t. In each step one particle is chosen uniformly at random and swaps sides.
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which is equivalent to

Let A be the event that the model, when starting in state 1, passes through state N/2 
before reaching a state from {1,N − 1} again. Then

  ◻

It is interesting to note that the worst-case instance for Kempe chains is easy 
for all other considered algorithms.

Theorem 13 On a graph where adding up to T edges completes a depth-2 star, ILS 
with color eliminations rediscovers a proper 2-coloring in expected time O(n log+ T)
.

Proof We argue that the graph’s Grundy number is � = 3 as then the claim follows 
from Theorem 10. Since all vertices but the root have degree at most 2, their colors 
must be at most 3. Assume for a contradiction that the root has a color larger than 3. 
Then there must be a child v of color 3. But then v has a free color in {1, 2} , contra-
dicting a Grundy coloring. Hence also the root must have color at most 3, complet-
ing the proof that � = 3 .   ◻

Theorem 14 On the depth-2 star RLS and (1+1) EA both have expected optimiza-
tion time O(n log n) in the static setting and O(n log+ T) to rediscover a proper 2-col-
oring after adding up to T edges.

Proof First note that any conflict can be resolved by one or two mutations. The lat-
ter is necessary in the unfavourable situation of {r, u}, {u, v} ∈ E , r being the root, 
with c(r) = 2 = c(u) and c(v) = 1 . Then both u and v need to be recolored simulta-
neously or in sequence. We show that every conflict has a constant probability of 

TN∕2→1 = TN∕2→{1,N−1} +
1

2
⋅ (TN−1→N∕2 + TN∕2→1)

= TN∕2→{1,N−1} +
1

2
⋅ (T1→N∕2 + TN∕2→1)

1

2
⋅ T1→N∕2 + TN∕2→{1,N−1} =

1

2
⋅ TN∕2→1.

E
(

T1→{1,N−1}

)

= Pr(A) ⋅ E
(

T1→{1,N−1} ∣ A
)

+ Pr
(

A
)

⋅ E
(

T1→{1,N−1} ∣ A
)

= Pr(A) ⋅ E
(

T1→N∕2 + TN∕2→{1,N−1}

)

+ Pr
(

A
)

⋅ E
(

T1→1 ∣ A
)

= Pr(A) ⋅ E

(

T1→N∕2 + TN∕2→1

2

)

+ Pr
(

A
)

⋅ E
(

T1→1 ∣ A
)

= �(E
(

T1→1

)

) = �(2N∕N).
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being resolved within the next n steps. Let Xt denote the number of conflicts at time 
t ∈ ℕ0 . If Xt > 0 , the probability of improvement within n steps is at least

Here, the term 1∕2 ⋅
(

n

2

)

 describes all combinations of two relevant mutations con-

cerning nodes u and v in sequence. The next two factors indicate that in the selected 
steps both u and v are recolored and all remaining nodes are left apart. Finally, the 
last factor is the probability of not mutating both vertices in the remaining n − 2 
steps. Note that for RLS the penultimate factor disappears. Hence, the expected 
number of conflicts after n steps is

and we obtain an expected multiplicative drift of

Applying the multiplicative drift theorem [10] yields an upper bound of 
8e2

1+1∕n
log(1 + xmax) = O(log+ xmax) for the expected number of phases. Here, 

xmax ≤ n in the static setting and xmax ≤ T  in the dynamic setting denotes the maxi-
mum number of conflicts. Hence, the runtime bounds are O(n log n) and O(n log+ T) 
in the static and dynamic settings, respectively, for RLS and (1+1) EA.   ◻

4  Reoptimization Times on Planar Graphs

We also consider planar graphs with degree bound � ≤ 6 . It is well-known that all 
planar graphs can be colored with 4 colors, but the proof is famously non-trivial. 
Coloring planar graphs with 5 colors has a much simpler proof, and this setting was 
studied in [41]. The reason for the degree bound � ≤ 6 is that in [41] it was shown 
that for every natural number  c there exist tree-like graphs and a coloring where 
the “root” is c-colored, and no Kempe chain or color elimination can improve this 
coloring. In the following we only consider the unbounded palette as no results for 
general planar graphs are known for bounded palette sizes.

Theorem  15 Consider adding up to T edges to a 5-colored graph such that the 
resulting graph is planar with maximum degree � ≤ 6 . Then the worst-case expected 

p ≥
1
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⋅
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n
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)

⋅
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⋅
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.
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time for ILS with Kempe chains or color eliminations to rediscover a proper 5-col-
oring is O(n log+ T).

Proof Lemma 8 implies that, after inserting up to T edges and running Grundy local 
search, at most T vertices are colored 6 or 7. Lemma 7 showed that the number of 
vertices colored 6 or 7 is non-increasing.

In [41] it was shown that for each vertex v colored 6 or 7, there is a Kempe chain 
operation affecting a neighbour of v such that a color c at v becomes a free color and 
v receives a color at most 5 after the next Grundy local search. If there are i nodes 
colored 6 or 7, the probability of a Kempe chain move reducing the number of verti-
ces colored with the highest color is at least �(i∕n).

The same holds for color eliminations as in the aforementioned scenario, color c 
can be eliminated by a single Kempe chain. If there were other c-colored neigh-
bors of v not affected by the Kempe chain, this would be impossible. This means 
that a color elimination with the right parameters simulates the desired Kempe chain 
operation.

There are at most T 7-colored nodes initially, and the expected time to recolor 
them is O(n log+ T) . Then there are at most T 6-colored nodes, and the same argu-
ments yield another term of O(n log+ T) .   ◻

5  Faster Reoptimization Times Through Tailored Algorithms

We now consider the performance of the original algorithms, but enhancing them with 
tailored operators that focus on the region of the graph that has been changed. The 
assumption for bounded-size palettes is that the algorithms are able to identify which 
edges are conflicting. This means that we are considering a gray box optimization sce-
nario instead of a pure black-box setting. Since many of the previous results indicated 
that algorithm spend most of their time just finding the right vertex to apply mutation 
to, we expect the reoptimization times to decrease when using tailored operators.

The (1+1) EA and RLS are modified so that they mutate vertices that are part of a 
conflict with higher probability than other non-conflicting vertices. For the (1+1) EA 
we use a mutation probability of 1/2 for the former and the standard mutation rate of 
1/n for the latter. This is similar to fixed-parameter tractable evolutionary algorithms 
presented in [21] for the minimum vertex cover problem. Furthermore, step size adap-
tation which allows different amounts of changes per component of a given problem 
have been investigated for the dual formulation of the minimum vertex cover problem 
[27]. 



3169

1 3

Algorithmica (2021) 83:3148–3179 

Algorithm 7 Tailored (1+1) EA (x)
1: while optimum not found do
2: Generate y by deciding to mutate each xw with probability 1/2 if w is part of

a conflict, and with probability 1/n otherwise. If yes, choose a new value yw ∈
{1, . . . , k} \ {xw} uniformly at random.

3: If y has no more conflicts than x, let x := y.

For RLS, the algorithm either flips a uniform random vertex that is part of a 
conflict or a vertex chosen uniformly at random from all vertices. The decision 
which strategy is used is made uniformly as well. 

Algorithm 8 Tailored RLS (x)
1: while optimum not found do
2: Generate y by choosing a vertex w as follows. With probability 1/2 choose w uni-

formly at random from all vertices that are part of a conflict, otherwise choose w
uniformly at random from all vertices. Choose a new value yw ∈ {1, . . . , k} \ {xw}
uniformly at random and set yj = xj for all j = w.

3: If y has no more conflicts than x, let x := y.

For unbounded-size palettes, new edges can lead to higher color values emerg-
ing. We work under the assumption that the algorithm is able to identify the verti-
ces with the currently largest color. The tailored ILS algorithm then applies muta-
tion to a vertex  v chosen uniformly from all vertices with the largest color as 
follows. Color eliminations are applied to v directly. Kempe chains are most use-
fully applied in the neighborhood of v, hence a neighbor of v is chosen uniformly 
at random. 

Algorithm 9 Tailored ILS (x) with color eliminations (resp. Kempe chains)
1: Replace x by the result of Grundy local search applied to x.
2: repeat forever
3: Let w be a vertex chosen uniformly at random from all vertices with the largest

color.
4: Apply a color elimination to w (resp. apply a Kempe chain to a vertex chosen uni-

formly at random from the neighbors of w) to generate a coloring y.
5: Let z be the outcome of Grundy Local Search applied to y.
6: If z x then x := z.

We argue that these tailored algorithms can be implemented efficiently, as 
stated in the following theorem.

Theorem 16 Consider the tailored RLS, the tailored (1+1) EA and the tailored ILS 
on a connected graph G = (V ,E) with |V| ≥ 2 and maximum degree � . If b denotes 
the number of vertices currently involved in a conflict, 
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1. one iteration of tailored RLS can be executed in expected time O(�),
2. one iteration of the tailored (1+1)  EA can be executed in expected time 

O(min{b�, |E|}) , and
3. one iteration of tailored ILS with Kempe chains or color eliminations can be 

executed in time O(|E|).

Again, a proof is deferred to Appendix A to keep the paper streamlined. Note 
that, in contrast to the bounds from Theorem 1, the bounds for the execution time 
of ILS are unchanged. The bound for RLS is now based on the maximum degree 
� instead of the average degree 2|E|/|V| since vertices that are part of a conflict 
may have an above-average degree. For graphs with � = O(|E|∕|V|) , e. g., regular 
graphs or graphs with � = O(1) , both bounds are equivalent. For the (1+1) EA 
we get a much larger bound that is linear in the number of vertices that are part 
of a conflict, and never worse than O(|E|). This is because all such vertices are 
mutated with probability 1/2 and so determining the fitness of the offspring takes 
more time. It is plausible that the number of vertices that are part of a conflict 
quickly decreases during an early stage of a run, thus limiting these detrimental 
effects.

Revisiting previous analyses shows that in many cases the tailored algorithms 
have better runtime guarantees.

Theorem 17 If adding up to T edges completes an n-vertex path, then the expected 
time to rediscover a proper 2-coloring is O(n2) for the tailored (1+1)  EA and 
O(n2 log+ T) for the tailored RLS.

Proof Suppose there are j ≤ T  conflicting edges in the current coloring. Note that, 
when removing all conflicting edges, the graph decomposes into properly colored 
paths (see Fig. 3). The vertex sets of these sub-paths form a partition of the graph’s 
vertices. By the pigeon-hole principle, the shortest of these properly colored paths 
has length at most n/j.

These properly colored sub-paths can increase or decrease in length. For instance, 
the path {6, 7} in Fig. 3 is shortened by 1 when flipping only vertex 6 or flipping 
only vertex 7. It is lengthened by 1 if only vertex 5 is flipped or only vertex 8 is 
flipped. By the same arguments as in [13], recapped in the proof of Theorem 2, the 
expected number of relevant steps to decrease the number of conflicts is O(n2∕j2) 
since we have a fair random walk on states up to n/j.

For the tailored (1+1)  EA, the probability for a relevant step is 1/2 as in each 
generation, a conflicting vertex in a shortest properly colored path is mutated with 
probability 1/2. This results in an expected time bound of O(n2∕j2) for decreasing 
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Fig. 3  A colored path with vertices {1,… , 12} . When removing conflicting edges, the graph is decom-
posed into properly colored paths with vertex sets {1, 2}, {3, 4, 5}, {6, 7}, {8, 9, 10, 11, 12}
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the number of conflicts from  j. Therefore, the worst-case expected time is at most 
∑T

j=1
O(n2∕j2) = O(n2).

For RLS, note that the only difference from the above analysis is that the prob-
ability for a relevant step now becomes 1/(2j). This results in a worst-case expected 
time bound of at most 

∑T

j=1
O(j ⋅ (n2∕j2)) = O(n2 log+ T) .   ◻

Now we analyze the tailored algorithms with multiple conflicts for the depth-2 
star. For RLS and both ILS algorithms we obtain an upper bound of O(T), which 
is best possible in general as these algorithms only make one local change (modulo 
flipping the root of a depth-2 star) and �(T) local changes are needed to repair dif-
ferent parts of the graph. The tailored (1+1) EA only needs time O(log+ T) as it can 
fix many conflicts in one generation.

Theorem 18 If adding up to T edges completes a depth-2 star, then the expected time 
to rediscover a proper 2-coloring is O(T) for the tailored RLS and O(log+ T) for the 
tailored (1+1) EA.

Proof Let Ct ≤ T  denote the number of conflicts at time  t. For RLS, every vertex 
involved in a conflict is mutated with probability 1∕(2Ct) + 1∕(2n) , which is at 
least 1∕(2Ct) and at most 1∕Ct as Ct ≤ n . We show that the expected time to halve 
the number of conflicts, starting from Ct conflicts, is at most c ⋅ Ct for some con-
stant c > 0 . For all t′ ≥ t , as long as Ct� > Ct∕2 , the probability of mutating a vertex 
involved in a conflict is at least 1∕(2Ct) and at most 2∕Ct.

Consider a conflict on a path Pi from the root to a leaf. This conflict can be 
resolved as argued in the proof of Theorem 14. If both edges of Pi are conflicting, 
flipping the middle vertex (and not flipping any other vertices of Pi ) resolves both 
conflicts. Otherwise, if the conflict involves a leaf node, flipping said leaf and not 
flipping any other vertices of Pi resolves all conflicts on Pi . Finally, if the conflict 
involves the edge at the root, it can be resolved by first flipping the middle vertex 
and then flipping the leaf, and not flipping any other vertices of Pi during these steps.

In all the above cases, a lower bound on the probability of resolving all conflicts 
on the path Pi during a phase of 2Ct generations, or decreasing the number of con-
flicts to a value at most Ct∕2 , is at least

which is bounded from below by a positive constant for Ct ≥ 3 . The term 
(1 − 2∕Ct)

2(2Ct−2) reflects the probability of the event that up to 2 specified verti-
ces do not flip during 2Ct − 2 iterations. Note that these products (1 − 2∕Ct) can 
be dropped for iterations in which the number of conflicts has decreased to Ct∕2 
(and the upper probability bound of 2∕Ct might not hold). Also note that the above 
events are conditionally independent for all paths Pi that have conflicts, assuming 
that the root does not flip. There are at least Ct∕2 such paths at the start of the period 
of 2Ct generations. Hence, the expected number of conflicts resolved in a period of 
2Ct generations is at least c ⋅ Ct , for a constant c > 0 , or the number of conflicts has 

(

2Ct

2

)

⋅
1

2Ct

⋅
1

2Ct

(

1 −
2

Ct

)2(2Ct−2)

,
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decreased to a value at most Ct∕2 . By additive drift, the expected time for the num-
ber of conflicts to decrease to Ct∕2 or below is at most Ct∕c.

This implies that the expected time for Ct to decrease below 3 is at most

The expected time to resolve the final at most 2 conflicts is O(1) by considering the 
same events as above.

For the (1+1) EA, we note that in any consecutive two generations, conditioned 
on the event that the root does not flip, a conflict in path Pi gets resolved with prob-
ability at least

as in the first generation, with probability 1
2
(1 −

1

n
) , the middle vertex is flipped and 

the leaf is not flipped, and in the second generation, with probability 1
2
⋅
1

2
 , the leaf is 

flipped and the middle vertex is not flipped.
Thus, by the linearity of expectation and the fact that, with probability at least 

1/4, the root is not flipped in two generations, we know that

where Ct is the number of conflicting paths at time t. Therefore, by the multiplica-
tive drift theorem [10], the expected time to reduce the number of conflicts from at 
most T to 0 is O(log+ T) .   ◻

Theorem 19 Consider a dynamic graph that is a path or binary tree after insert-
ing T edges. The expected time for tailored ILS with Kempe chains to rediscover a 
proper 2-coloring is O(T).

Proof For paths, the largest color that can emerge through added conflicting edges 
and the following Grundy local search is 3. Tailored ILS picks a random 3-colored 
vertex v and applies either a color elimination to v or a Kempe chain to a neighbor 
of v. In both cases, choosing appropriate colors will create a free color for v and the 
number of 3-colored vertices decreases. Since the probability of choosing appropri-
ate colors is �(1) , the expected time to reduce the number of 3-colored vertices is 
O(1). Since this has to happen at most T times, an upper bound of O(T) follows.

For binary trees, color values of 4 can emerge during Grundy local search (but 
no larger color values since the maximum degree is 3). By Lemma 7, the number of 
vertices colored 3 or 4 cannot increase. As argued above for paths, the expected time 
until color 4 disappears is O(T). By then, there are at most T 3-colored vertices and 
the time until these disappear is O(T) by the same arguments.   ◻

Theorem  20 Consider a dynamic graph that is bipartite after inserting T edges. 
Then tailored ILS with color eliminations re-discovers a proper 2-coloring in 

T
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+

T
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O(min{
√

T ,� }n) iterations where �  is the Grundy-number after inserting the 
edges.

If no end point of an added edge is neighbored to an end point of another added 
edge, or if � ≤ 4 , tailored ILS with color eliminations re-discovers a proper 2-col-
oring in O(T) expected iterations.

Proof The proof follows from the proof of Theorem 9 and that the maximum color 
is bounded by min{

√

T ,� } . The expected time to eliminate the largest color is at 
most  n: there are at most n vertices with the largest color. In every iteration, the 
algorithm applies color eliminations to a vertex  v of the largest color, and every 
color elimination creates a free color that allows v to receive a smaller color in the 
Grundy local search. (The time bound is n instead of T since, as mentioned in the 
proof of Theorem 9 the number of vertices with large colors can increase if the num-
ber of vertices with the largest color decreases.)

If no end point of an added edge is neighbored to an end point of another added 
edge, or if � ≤ 4 , then the largest color is at most 4 and the time to eliminate at most 
T occurrences of color 4 and at most T occurrences of color 3 is O(T).   ◻

Theorem 21 Consider adding T edges to a 5-colored graph such that the resulting 
graph is planar with maximum degree � ≤ 6 . Then the worst-case expected time for 
tailored ILS with Kempe chains or color eliminations to rediscover a proper 5-col-
oring is O(T).

Proof This result follows as in the proof of Theorem 15. The only difference is that 
every mutation only affects vertices of the currently largest color (color elimina-
tions) or neighbors thereof (for Kempe chains). The proof of Theorem 15 has shown 
that the probability of a mutation being improving is �(1) . Hence, the probability 
of reducing the number of 7-colored vertices is �(1) and in expected time O(T), 
all 7-colored vertices are eliminated. Since, as shown in the proof of Theorem 15, 
there are at most T 6-colored vertices, the same arguments apply to the number of 
6-colored vertices.   ◻

Despite these positive results for tailored operators, they cannot prevent expo-
nential times as shown for binary trees and depth-2 stars.

Theorem  22 If adding an edge completes an n-vertex complete binary tree, the 
worst-case expected time for the tailored (1+1) EA to rediscover a proper 2-color-
ing is �

(

n(n−3)∕4
)

 . The tailored RLS is unable to rediscover a proper 2-coloring in 
the worst case.

Proof The proof is similar to proof of Theorem 3. The Hamming distance between 
any worst-case coloring in the set A0 and any other acceptable coloring is still at 
least n+1

4
 . We can save a factor of n as the algorithm will mutate each of the endpoints 
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of the conflict edge (u, v) with 1/2 probability, rather than with probability 1/n as 
before.   ◻

Theorem 23 On the depth-2 star from Theorem 11, tailored ILS with Kempe chains 
needs �(2n∕2) generations in expectation to rediscover a proper 2-coloring.

Proof Tailored ILS with Kempe chains applies a Kempe chain to uniformly cho-
sen neighbors of the root. The transition probabilities still follow an Ehrenfest urn 
model; the only difference is that no Kempe chain can originate from the root itself. 
This does not affect the proof of Theorem 11, and the same result applies.   ◻

6  Discussion and Conclusions

We have studied graph vertex coloring in a dynamic setting where up to T edges are 
added to a properly colored graph. We ask for the time to re-discover a proper color-
ing based on the proper coloring of the graph prior to the edge insertion operation. 
Our results in Table  1 show that reoptimization can be much more efficient than 
optimizing from scratch, i.e., neglecting the existing proper coloring. In many upper 
bounds a factor of log n can be replaced by log+ T = max{1, logT} and we showed 
a tighter general bound for bipartite graphs of O(min{

√

T ,� }n log n) as opposed to 
O(n2 log n) [41]. However, this heavily depends on the graph class and algorithms. 
For instance, depth-2 stars led to exponential times for Kempe chains and times of 
O(n log+ T) for all other algorithms. Reoptimization can also be more difficult as we 
can naturally create worst-case initial colorings which are very unlikely in the static 
setting. On paths and binary trees the dynamic setting allows for negative results 
that are stronger than those previously published [13, 40].

Tailored operators put a higher probability on mutating vertices involved in 
conflicts (for bounded-size palettes) or that have large colors (for unbounded-size 
palettes). This improves many upper bounds from O(n log+ T) to O(T). For the 
(1+1) EA on depth-2 stars the expected time even decreases to O(log+ T) . However, 
tailored algorithms cannot prevent inefficient runtimes in settings where the corre-
sponding generic algorithm is inefficient.

Our analyses concerned the number of iterations. When considering the execu-
tion time as the number of elementary operations (see Theorems 1 and 16), on pla-
nar graphs with � ≤ 6 ILS rediscovers a proper 5-coloring in expected O(T) itera-
tions. This translates to O(nT) elementary operations using Theorem 16 and the fact 
that for planar graphs G = (V ,E) we have |E| = O(|V|) . This is generally faster than 
the O(n2) bound for the problem-specific algorithm from [31] that solves the static 
problem. The latter algorithm guarantees a 4-coloring though, whereas we can only 
guarantee a 5-coloring.5 For dynamic coloring algorithms, as mentioned in Sect. 2.4, 
there is a forest, which is a planar graph, on which dynamically maintaining a 

5 Given the complexity of the proof of the famous Four Color Theorem and the algorithm from [31], we 
would not have expected a simple proof that guarantees a 4-coloring.
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c-coloring requires recoloring at least �(n2∕c(c−1)) vertices per update on average, for 
any c ≥ 2 . Setting c = 5 yields a lower bound of �(n1∕10) for rediscovering a 5-col-
oring of the mentioned planar graph.

For future work, it would be interesting to study the generic and tailored vertex 
coloring algorithms on broader classes of graphs. Furthermore, the performance of 
evolutionary algorithms for other graph problems (e.g., maximum independent set, 
edge coloring) is largely open.

Appendix

Implementation Notes and Analysis of Execution Times

Here we present proofs of Theorems 1 and Theorem 16 on the computational com-
plexity of executing one iteration of the considered algorithms.

Proof of Theorem 1 We store the graph G as an adjacency list, with an array of ver-
tices and every vertex storing a linked list or array of all its neighbors. We further 
assume that all vertices have space to store their current color as well as temporary 
markers for graph traversals, and for temporarily marking vertices to be recolored.

Since all vertices are stored in an array, we can choose a vertex uniformly at ran-
dom in time O(1). Consequently, the mutation step in RLS takes time O(1). We still 
need to consider the selection step, though. A naive implementation might copy 
the parent, then perform mutation and then compute the number of conflicts in the 
mutant from scratch, in a graph traversal that takes time �(|V| + |E|) . With a more 
clever implementation, we can be much faster and avoid some of these steps. Let v 
be the vertex selected for mutation and let i be the new color chosen for v in the off-
spring, then we can simply check all neighbors of v and count how many neighbors 
have the same color as v and how many neighbors have color  i. The difference of 
these quantities determines whether recoloring v would decrease the fitness or not. If 
it does, the generation is complete. Otherwise, we do recolor v with color i. This can 
be done in time O(1) + c deg(v) , when v is fixed, for a suitable constant c > 0 . Since 
v is chosen uniformly at random, we get an upper bound of

since 
∑

v∈V deg(V) = 2�E� (and |E| ≥ |V| − 1 ≥ 1 implies O(1) ⊆ O(|E|∕|V|)).
For the (1+1) EA we can proceed in a similar way. Instead of deciding individu-

ally for each vertex whether it should be recolored or not (which would take time 
�(|V|) ), we first compute the number of vertices to be recolored according to the 

distribution Pr(recolor i vertices) =
(

|V|

i

)

(1∕|V|)i(1 − 1∕|V|)|V|−i . Then we uni-

formly select i different vertices to be recolored and proceed as for RLS (taking care 
to correctly count edges for which both endpoints are to be recolored; this can be 
done using temporary markers for these vertices). Since the expected number of 

(1)O(1) +
1

|V|

∑

v∈V

c deg(v) = O(1) +
2c|E|

|V|
= O(|E|∕|V|)
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recolored vertices is O(1), the expected time to execute one iteration of the 
(1+1)  EA, including expected time O(1) for setting and clearing markers, is 
O(1) + O(1) ⋅ O(|E|∕|V|) = O(|E|∕|V|).

A Kempe chain can be implemented in time O(|V| + |E|) with a graph traversal 
on the subgraph Hj(v) . For instance, we can run a depth-first search (DFS) that only 
considers neighbors colored  i or  j; this makes DFS run on the subgraph Hj(v) . A 
color elimination also runs in time O(|V| + |E|) as it concerns a Kempe chain on a 
union of subgraphs. More specifically, if v1,… , v

�
 denote all i-colored neighbors of 

vertex v, these vertices may belong to different subgraphs Hj(v⋅) (see Sect. 2.2) or 
multiple neighbors might be part of the same subgraph. To account for this, we can 
start DFS at v1,… , v

�
 in any given order and skip vertices that have already been 

visited in a previous DFS call. This may require the use of markers that can be set 
and cleared in time O(|V|).

We still need to account for the time to execute Grundy local search and selec-
tion. As shown in [15], Grundy local search runs in time O(|V| + |E|) . Selection 
is based on the number of conflicts and the color-occurrence vector (see Sect. 2.2). 
After every run of Grundy local search, the coloring is feasible and then selection is 
purely based on the color-occurrence vector (unless a dynamic change occurs). The 
color-occurrence vector of the offspring can either be computed from scratch or be 
computed incrementally from that of the parent by updating the color counters dur-
ing mutation and local search. In both cases, the additional time for this is bounded 
by O(|V| + |E|) . Hence the total time to execute one generation of ILS with either 
mutation operator is O(|V| + |E|) . Since the graph is connected and |V| ≥ 2 implies 
|E| ≥ 1 , we have O(|V| + |E|) = O(|E|) .   ◻

Now we analyse the execution times of tailored algorithms and give a proof of 
Theorem 16.

Proof of Theorem  16 For the tailored RLS we only need to consider the case that 
the algorithm decides to select a vertex w is chosen uniformly at random from all 
vertices that are part of a conflict. To implement this efficiently, we use an idea from 
[16]: we maintain flags for each vertex that indicate whether the vertex is currently 
part of a conflict as well as a separate array A = A[1]…A[|V|] of size |V| that stores 
all vertices that carry a positive flag. In addition, every vertex with a positive flag 
stores its position in the array A. We maintain a value s that reflects the number of 
such vertices currently present in the array. Then picking a vertex from this array 
uniformly at random in time O(1) is straightforward: pick an index i uniformly at 
random from {1,… , s} and return the vertex stored at A[i].

We argue that the array can be maintained efficiently. When a vertex w is being 
recolored following a positive selection, we check w and its neighbors. If a vertex v 
becomes part of a conflict, the flag is set, s is incremented and v is inserted into 
the array as A[s]. We store the position s in the vertex v. If a vertex v is no longer 
part of a conflict, we check v’s position in the array. Let this be  i. Then v’s flag is 
reset, element A[s] is copied to A[i] and s is decremented. This way, the vertex is 
removed from the array in time O(1). The time for supporting an update (i.e., adding 
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or removing a vertex with a flag) to the data structure and for sampling a uniform 
vertex from A is O(1). Since this is done for w and its neighbors, the total effort for 
one iteration of the tailored RLS is O(�).

Note that the previous estimation  (1) from the proof of Theorem 1 that lead to 
the bound O(|E|/|V|) no longer applies if we only select from vertices with a conflict 
as the average degree of these vertices may be larger than �(|E|∕|V|) . However, 
we can argue that, by the same argument as in the proof of Theorem 1, the time for 
recoloring a conflicting vertex v is O(1) + c deg(v) = O(�) , where � is the maximum 
degree of the graph.

Note that for the (1+1)  EA the effort for executing an iteration may increase, 
compared to RLS, because of the higher mutation rate of 1/2 for vertices that are 
part of a conflict. When there are b vertices v1,… , vb being part of a conflict, an 
iteration can still be executed in time O(1) ⋅

∑b

i=1
deg(vi) . This is bounded by O(b�) . 

The running time O(min{b�, |E|}) for the tailored (1+1) EA then follows from the 
observation that an iteration can always finish in time O(|V| + |E|) = O(|E|).

For tailored ILS we need to be able to choose from vertices with the largest color. 
To implement this efficiently, we may use arrays A1,A2,… ,A�+1 such that Ai stores 
all vertices that are currently colored i. These arrays can be set up and maintained 
as described above for RLS and the array A. The largest color c can clearly be deter-
mined in time O(|V|) and picking a uniform random vertex from Ac takes time O(1). 
Thus, the computational complexity only increases by a constant factor and the pre-
vious bound of O(|E|) still applies (recall that |V| = O(|E|) ).   ◻
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