
Time Complexity Analysis of RLS and (1+1) EA for the Edge
Coloring Problem

Jakob Bossek
bossek@wi.uni-muenster.de
Dept. of Information Systems

University of Münster, Münster, Germany

Dirk Sudholt
d.sudholt@sheffield.ac.uk

Department of Computer Science
University of Sheffield, Sheffield, United Kingdom

ABSTRACT
The edge coloring problem asks for an assignment of colors to edges
of a graph such that no two incident edges share the same color
and the number of colors is minimized. It is known that all graphs
with maximum degree ∆ can be colored with ∆ or ∆ + 1 colors, but
it is NP-hard to determine whether ∆ colors are sufficient.

We present the first runtime analysis of evolutionary algorithms
(EAs) for the edge coloring problem. Simple EAs such as RLS and
(1+1) EA efficiently find (2∆ − 1)-colorings on arbitrary graphs and
optimal colorings for even and odd cycles, paths, star graphs and
arbitrary trees. A partial analysis for toroids also suggests efficient
runtimes in bipartite graphs withmany cycles. Experiments support
these findings and investigate additional graph classes such as hy-
percubes, complete graphs and complete bipartite graphs. Theoret-
ical and experimental results suggest that simple EAs find optimal
colorings for all these graph classes in expected timeO(∆ℓ2m logm),
wherem is the number of edges and ℓ is the length of the longest
simple path in the graph.

CCS CONCEPTS
• Theory of computation → Theory of randomized search
heuristics;

KEYWORDS
Edge coloring problem, runtime analysis
ACM Reference Format:
Jakob Bossek and Dirk Sudholt. 2019. Time Complexity Analysis of RLS
and (1+1) EA for the Edge Coloring Problem. In Proceedings of Foundations
of Genetic Algorithms XV (FOGA ’19). ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3299904.3340311

1 INTRODUCTION
Evolutionary algorithms (EAs) are general purpose, bio-inspired
methods that have proven to perform extraordinarily well on a
wide range of optimization problems [7]. In the last decades the-
oretical analysis of EAs and related methods, especially the time
complexity analysis, gained a lot of attention and came up with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
FOGA ’19, August 27–29, 2019, Potsdam, Germany
© 2019 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-6254-2/19/08. . . $15.00
https://doi.org/10.1145/3299904.3340311

a manifold of analysis methods and results [2, 15, 22]. While in
the beginning simple toy functions like ONEMAX were studied
predominantly, research soon turned its focus to well-known com-
binatorial optimization problems. So far many results are available
for, e. g., minimum spanning trees [21], maximum matchings [13],
shortest paths [24], Eulerian cycles [20], scheduling [28] or vertex
coloring [11, 25, 26] to mention a few.

We contribute to the fundamental understanding of working
principles of evolutionary algorithms by considering the edge col-
oring problem. Given a simple graph with n vertices andm edges,
the goal is to assign colors to the edges such that no two incident
edges share the same color, called a proper coloring, and the size of
the used color palette is minimal. Edge coloring has various applica-
tions in (job shop) scheduling [27] or the assignment of frequencies
in fiber optic networks [10].

One can easily see that each simple graph can be properly col-
ored with 2∆ − 1 colors in time O(∆m), where ∆ is the maximum
node degree in the graph. An astonishing theorem by Vizing states
that any simple graph can be colored either by ∆ (class 1) or ∆ + 1
(class 2) colors.1 Holyer [14] proved that edge coloring is NP-
hard on general graphs and hence all known exact algorithmic
endeavours require exponential time. However, Misra & Gries [19]
provided a constructive proof of Vizing’s theorem. The resulting
algorithm finds an coloring with at most ∆+ 1 colors in timeO(nm)
and makes use of a sophisticated procedure called a fan rotation.
Oftentimes, restrictions to specific graph classes lead to more effi-
cient algorithms since one can leverage structural properties. For
∆-edge-colorable bipartite graphs, algorithms with running time
O(m logm) by Alon [1],O(∆m) by Schrijver andO(m log∆) by Cole,
Ost and Schirra [8] have been proposed.

In distributed computing many machines operate collaboratively
in order to solve a problem. In the famous LOCAL communication
model a network is expressed as a graphG = (V , E) with maximum
degree ∆ where adjacent nodes perform local computations and ex-
change information directly in discrete rounds via message passing
(see, e. g., [18]). Here, the running time is expressed by means of
the (expected) number of rounds until a given problem is solved
and one usually aims for poly-logarithmic running times. Graph
coloring problems (vertex and edge coloring) have a long tradition
in distributed computing and have been studied extensively for
decades mainly due to their symmetry breaking properties and the
fact that it is easy to check solutions locally [3]. That is, to verify
that a (2∆− 1)-edge-coloring is proper for a certain edge one needs
to check the local neighborhood only. Simple, yet efficient local

1Examples for class 1 graphs are even cycles, bipartite graphs in general and complete
graphs with an even number of nodes. In contrast, e. g., odd cycles and complete
graphs with an odd number of nodes belong to class 2.

102

FOGA ’19, August 27–29, 2019, Potsdam, Germany Jakob Bossek and Dirk Sudholt

randomized distributed algorithms for (2∆ − 1)-coloring exist for
over 30 years [3]. Beating this natural barrier in the deterministic
setting was a major open problem for decades. Just recently, con-
siderable progress was made [4, 6, 12], e. g., by Ghaffari et al. [12]
who proposed a deterministic distributed algorithm that calculates
a (1 + o(1))∆-coloring in poly-logarithmic time in the local model
as long as ∆ = ω(logn).

Graph coloring has been subject of studies in the context of
randomized search heuristics [11, 25, 26]. This includes studies
of a simple Ising model, a model of ferromagnetism where one
seeks tomaximize the number of edges where both end points have
the same color, as it is equivalent to the vertex coloring problem
in case of bipartite graphs. For the Ising model/vertex coloring,
Fischer and Wegener [11] showed that on cycle graphs RLS and
(1+1) EA find a proper 2-coloring in expected timeO(n3) andO(n2)
if crossover is used. Sudholt [25] considered the class of complete
binary trees and showed that (1+1) EA needs exponential expected
time, but a simple Genetic Algorithm with fitness sharing and
crossover locates a global optimum in expected cubic time. Sudholt
and Zarges [26] studied the running time of an iterated local search
(ILS) algorithm with different mutation operators based on color
eliminations and Kempe chains (as in the algorithm of Misra and
Gries). These operators recolor large connected parts of the graph.
They showed that ILS with color eliminations efficiently computes
2-colorings in bipartite graphs while ILS with Kempe chains needs
exponential time with overwhelming probability. Recently, Bossek
et al. [5] studied vertex coloring in a dynamic setting where edges
are added to a properly colored graph over time. Their results
show that re-optimization can be much faster than optimization
from scratch in certain situations. In contrast, adding edges in an
unfavorable order may lead to even worse asymptotic running
times than in the static setting.

In contrast to vertex coloring, the edge coloring problem has
not been considered by the EA theory community, despite being
a well-known NP-hard problem with important applications. We
address this problem here by providing rigorous runtime analyses
of RLS and (1+1) EA for selected graph classes. We show that these
algorithms are able to find proper edge colorings efficiently for a
range of graph classes. Our main results are gathered in Table 1.

This work is structured as follows. After formulating the founda-
tions in Section 2 we given some general bounds in Section 3. We
prove that a proper (2∆− 1)-coloring can be found in expected time
O(∆m logm) on arbitrary simple graphs with maximum degree ∆,
consider the expected time to find colorings with few conflicts,
and formulate general lower bounds for general graphs. Next, we
shift our focus to optimal colorings. In Section 4 we provide up-
per bounds for simple graph classes, e. g., cycles, paths and star
graphs. In Section 5 we show that on every tree the expected time
to find a proper coloring with ∆ colors is bounded from above by
O(∆ℓ2m logm) in expectation where ℓ is the length of the longest
path in the tree. In Section 6 we discuss the analysis of toroid graphs
as an example of a graph class with multiple cycles. Since the anal-
ysis turns out to be surprisingly challenging, we only present a
rigorous lower bound for a worst-case initialization and discuss the
challenges involved in rigorously proving upper bounds. Section 7
joins theory and practice by conducting a series of experiments to
(1) empirically back up our results, such as a conjectured O(m3)

bound for toroids, and (2) to check assumptions on other, more gen-
eral graph classes (e. g., hypercubes and complete graphs). Section 8
completes our first excursion into edge coloring with concluding
remarks and pointers to promising future research directions.

The appendix contains tools for the analysis of fair randomwalks
used in the main part; our presentation of these largely known
results may be of independent interest.

2 PRELIMINARIES
Let G = (V , E) be a simple undirected graph with n = |V | and
m = |E |. For an edge e we denote by deg(e) the number of edges
incident to e and by N (e) the set of edges incident to e . Note that
for every graph with minimum degree δ and maximum degree ∆
and every edge e we have

2δ − 2 ≤ deg(e) ≤ 2∆ − 2.

By ℓ := ℓ(G) we denote the length of the longest simple path in G
(that is, a path that does not loop back on itself).

We call a function c : E → {1, . . . ,k} an edge coloring/coloring
of G. An edge coloring c is termed proper if no two incident edges
share the same color, i. e.,∀e1, e2 ∈ E: e1∩e2 , ∅ ⇒ c(e1) , c(e2). A
graph is k-colorable if there is a proper edge coloring with k colors.
The smallest number k , such that G is k-colorable, is the so-called
chromatic index and denoted χ ′(G) or just χ ′ in the following.

We call an edge pair (e1, e2) with e1 , e2 a conflict if the edges
are incident and have the same color. Likewise, we call an edge e a
conflict edge if there is at least one edge in N (e) that has the same
color assigned. We shall often refer to the unique vertex shared
between e1 and e2 as the common vertex of the conflict. A color i is
termed free for e if no incident edge is colored with i .

2.1 Algorithms
In this work we consider the size of the color palette to be fixed
to a parameter k ≥ χ ′. The search space is thus given by S =
{1, . . . ,k}m and the fitness function used is to minimize the number
of conflicts, that is, the number of edge pairs that are conflicting.
For example, if there are 4 edges e1, e2, e3, e4 sharing a common
vertex and all colored identically, they contribute

�4
2
�
= 6 conflicts

to the fitness.
Clearly, a solution x ∈ S with zero fitness is a proper k-coloring.

We are interested in the expected number of function evaluations
required until simple randomized search heuristics locate a proper
coloring for the first time. The algorithms under consideration are
randomized local search (RLS, see Algorithm 1) and (1+1) EA (see
Algorithm 2). Both algorithms maintain a single incumbent solution
x which is initialized uniformly at random. In each iteration the
incumbent is subject to mutation and the mutant y replaces x if
it has no more conflicts. The only difference is in the mutation
operator. While RLS recolors a single edge in each iteration with
probability 1 (called a local move), (1+1) EA recolors each edge with
probability 1/m independently. It thus has the ability to perform
multiple local moves simultaneously.

Unless stated otherwise, RLS and (1+1) EA start with a coloring
generated uniformly at random. Most of the upcoming positive
results will hold for arbitrary initial colorings.

103

Time Complexity Analysis of RLS and (1+1) EA for the Edge Coloring Problem FOGA ’19, August 27–29, 2019, Potsdam, Germany

Table 1: Overview of presented results. Herem is the number of edges, ∆ the maximum degree, δ the minimum degree, ℓ the
length of the longest simple path, k is the size of the color palette and χ ′ is the chromatic index. The lower bound for (bipartite)
toroids holds for a worst-case initial coloring with two remaining conflicts. We conjecture an upper bound of O(m3) for RLS
on bipartite toroids from any initialization.

Graph class Colors k RLS (1+1) EA

Coloring with k = χ ′

Cycle (even) ∆ O(m3) [Thm 14] O(m3) [Thm 14]

Cycle (odd) ∆ + 1 O(m logm) [Thm 15] O(m logm) [Thm 15]

Path ∆ O(m3) [Thm 16] O(m3) [Thm 16]

Star ∆ O(m2) [Thm 17] O(m2) [Thm 17]

General tree ∆ O(∆ℓ2m logm) [Thm 18] —
Toroid ∆ Ω(m3) [Thm 24] —

Coloring with k > χ ′
Graph with restricted
edge neighborhood ∆ + τ + 1 O(∆m logm) [Thm 6] O(∆m logm) [Thm 6]

Every graph 2∆ − 1 O(∆m logm) [Cor 7] O(∆m logm) [Cor 7]

General lower bounds Every connected graph ≥ ∆ Ω(m log(m/k)) [Thm 11] Ω(m log(m/k)) [Thm 11]

Every connected graph δ +O(1) Ω(km) [Thm 12] Ω(km) [Thm 12]

Algorithm 1 RLS
1: Generate x ∈ {1, . . . ,k}m uniformly at random.
2: while optimum not found do
3: Generate y by choosing an index i ∈ {1, . . . ,m} uniformly

at random, choosing a new value yi ∈ {1, . . . ,k} uniformly
at random and setting yj = x j for all j , i .

4: If y has no more conflicts than x , let x := y.

Algorithm 2 (1+1) EA
1: Generate x ∈ {1, . . . ,k}m uniformly at random.
2: while optimum not found do
3: Generate y by deciding to mutate each edge xi with prob-

ability 1/m: if yes, choose a new value yi ∈ {1, . . . ,k}
uniformly at random.

4: If y has no more conflicts than x , let x := y.

It should be noted that for reasons of clarity and consistency –
and because it seems to be more natural for edge coloring – all our
runtime bounds are stated in terms of the number of edges,m, as
opposed to the number of vertices.

2.2 On the Effect of Local Moves
To lay the foundations for the upcoming analyses, we explain the
effect of local moves, before considering fitness-improving and
fitness-neutral local moves (that is, local moves not altering the
fitness) in more detail.

Consider a local move at time t changing the color of an edge
e = {u,v} from i to j , i . This move can only affect the status of
edges in N (e) ∪ {e}.

Let e1, e2, . . . , ek be all i-colored edges in N (e) (if any). Then the
recolor operation will resolve all conflicts (e, e1), (e, e2), . . . , (e, eℓ).
However, if e ′1, e

′
2, . . . , e

′
r are all j-colored edges inN (e) (if any) then

the move will create conflicts (e, e ′1), (e, e ′2), . . . , (e, e ′r).
It will be useful to regard conflicts as particles that can move

through the graph. For example, if one previously conflicting edge
pair (e, e ′) becomes non-conflicting but another edge pair (e, e ′′)
now becomes conflicting, we say that the conflict has moved from
(e, e ′) to (e, e ′′). If a local move at e reduces the number of conflicts
by s , we select s conflicts involving e uniformly at random and
declare these to be resolved. The remaining conflicts (if any) are
then declared to have moved.

This random selection is used to break symmetries and to ensure
that every conflict has a fair chance to be removed in a fitness-
improving local move. For instance, if N (e) contains two i-colored
edges e1, e2 and one j-colored edge e ′1 then either the conflict (e, e1)
moves to (e, e ′1) and the conflict (e, e2) is declared resolved, or the
conflict (e, e2) moves to (e, e ′1) and the conflict (e, e1) is declared
resolved. These decisions are made with equal probability.

2.3 On Possible Improvements
We first collect some statements that allow us to identify possible
improvements.

Recall that a color i is called a free color for an edge e if color i
does not appear in the neighborhood of e . For every conflict (e1, e2),
if either edge e1 or e2 has a free color, there is a local move that
resolves the conflict.

The following lemma lower-bounds the number of free colors,
or colors that only lead to one conflict.

Lemma 1. For every edge e the following holds. Let kfree be the
number of free colors at e and kone the number of colors that only

104

FOGA ’19, August 27–29, 2019, Potsdam, Germany Jakob Bossek and Dirk Sudholt

create one conflict among its incident edges, then

2kfree + kone ≥ 2k − deg(e).
In particular, if there is no free color for e then e has at least 2k−deg(e)
colors leading to one conflict only.

Proof. Note thatkone colors account forkone edges incident to e .
All kfree free colors do not contribute any edges, but all remaining
k − kfree − kone colors contribute at least 2 edges. Since there are
only deg(e) edges, we have

(k − kfree − kone) · 2 + kone · 1 + kone · 0 ≤ deg(e)
which is equivalent to 2kfree + kone ≥ 2k − deg(e). □

By Lemma 1 every edge e involved in a conflict either has a free
color or it has one other color that leads to one conflict. We refer
to the latter color as an alternative color.

For edges that are part of many conflicts, there is a larger proba-
bility of reducing the number of conflicts.

Lemma 2. For every edge e that is part of at least 3 conflicts there
are at least k − ∆ + ⌈(∆ − 1)/3⌉ other colors for e that lead to at most
2 conflicts.

Proof. There are at most 2∆ − 2 edges incident to e . There can
be at most ⌊(2∆− 2)/3⌋ colors that also lead to 3 (or more) conflicts.
Thus there must be k − 1 − ⌊(2∆ − 2)/3⌋ ≥ k − ∆ + (∆ − 1)/3 other
colors that have at most 2 conflicts. Since the number of colors is
an integer, it is at least k − ∆ + ⌈(∆ − 1)/3⌉ as claimed. □

Conflicts can be resolved in case two or more conflicts of the
same color are incident.

Lemma 3. For every graph G with maximum degree ∆, for every
conflict (e1, e2) the following holds. If the conflict is incident to another
conflict (e3, e4) of the same color, with probability at least 1/(2km)
the conflict (e1, e2) is resolved in the next step.

Proof. Note that edges e1, e2, e3, e4 may not be mutually differ-
ent, however we know that e1 , e2, e3 , e4 and s :=

��Ð4
i=1{ei }

�� ≥ 3
as we are dealing with two different conflicts. We consider the fol-
lowing cases:

(1) The union of the two conflicts contains a path of length at
least 3.

(2) The two conflicts share a common center vertex.
Note that these are the only cases since the absence of a path of
length at least 3 implies that all edges must have one vertex in
common.

In the first case, the middle edge of that path can be recolored
with another color that only creates at most 1 conflict. By Lemma 1
this reduces the number of conflicts. Since we may create a new
conflict, the conflict (e1, e2) may either be declared as resolved, or
declared to have moved to the new conflicting edges. Since there
are at least 2 conflicts affected by the recolor operation, one of these
will be chosen uniformly at random to be declared to have moved.
So with probability at least 1/2, conflict (e1, e2) will be declared as
resolved.

In the second case, each of the s edges in
Ð4
i=1{ei } is involved

in at least s − 1 ≥ 2 conflicts. According to Lemma 1, recoloring
an edge in {e1, e2} with a free or an alternative color will make at

v1

e1

e2

e 3
e4

Figure 1: Example of a blocked conflict (e1, e2). Here, it is
blocked by another conflict (e3, e4) and cannot move further
down.

least 2 edge pairs non-conflicting (including (e1, e2)) while making
at most one non-conflicting edge pair conflicting. As above, the
probability that (e1, e2) will be declared resolved is at least 1/2. □

2.4 Fitness-Neutral Operations
We also describe and characterize some fitness-neutral operations.

Definition 4. Let (e1, e2) be a conflict at time t and let (e ′1, e ′2) ,
(e1, e2) be the same conflict at time t+1. We say that the conflictwas
rotated at time t if the common vertex has not changed: e1 ∩ e2 =
e ′1 ∩ e ′2. Otherwise, that is, if the common vertex has changed to a
neighbouring vertex, we say that the conflict has moved.

The following lemma establishes that conflicts can move in the
graph unless they are blocked by other conflicts.

Lemma 5. Consider a conflict (e1, e2). Let v1 be the end point of e1
not shared with e2. If there is no conflict that has v1 as shared vertex
then e1 has a free color or an alternative color that, when applied,
leads to the conflict being moved, with v1 as the new shared vertex.

The same statement also holds with the roles of e1 and e2 swapped.

Proof. W. l. o. g. e1 has color 1. Call v the unique joint vertex in
e1∩e2. We pessimistically assume that e1 has no free color as other-
wise the statement is trivial. By Lemma 1 (and excluding the color
c(e1) itself) e1 has s := 2k − deg(e) − 1 alternative colors, w. l. o. g.
color 2. We prove the statement by contraposition. Assume that all
these alternative colors lead to the conflict being rotated. Then for
all alternative colors i ∈ A(e1), there is exactly one i-colored edge
at v and there is no i-colored edge at v1, as otherwise i would not
be an alternative color for e1.

This means that the number of colors used at v1 is at most
k−(2k−deg(e)−1) = deg(e)−k+1 = (deg(v1)+deg(v)−2)−k+1 ≤
deg(v1) − 1. By the pigeon-hole principle, there must be at least
one color that appears at least twice at v1. This completes the
contraposition. Hence if there is no conflict withv1 as shared vertex,
there must be an alternative color for e1 that moves the conflict
along the edge e1, with v1 as new shared vertex. □

The requirements of Lemma 5 are necessary. Assume there is an-
other conflict (e3, e4), e3 , e1 and e4 , e1, with e1’s only alternative
color c(e3) , c(e1) (assuming e1 only has one alternative color) and
v1 as its common vertex (see Figure 1). Then recoloring e1 with its
alternative color c(e3) yields two conflicting edge pairs, (e1, e3) and

105

Time Complexity Analysis of RLS and (1+1) EA for the Edge Coloring Problem FOGA ’19, August 27–29, 2019, Potsdam, Germany

(e1, e4). Unless there are further c(e1)-colored conflicts involving
e1, this move leads to a decrease in fitness and will be rejected by
RLS. We say that then the conflict (e1, e2) is blocked by the conflict
(e3, e4).

3 GENERAL BOUNDS
3.1 (2∆ − 1)-Coloring Arbitrary Graphs
We first concentrate on rather generous color palettes such that
local recoloring can always reduce the number of conflicts. Our first
result is on arbitrary graphs with restricted edge neighborhoods.

Theorem 6. On every graph G = (V , E) with maximum degree ∆
and maxe ∈E deg(e) = ∆ + τ for 0 ≤ τ ≤ ∆ − 2, for every initial
coloring, RLS and (1+1) EA find a proper coloring with k = ∆ + τ + 1
colors in expected time O(∆m logm).

Proof. First note that given a color palette of size k = ∆ + τ + 1
for each conflict edge there is always at least one free color. Now
let Xt ∈ N denote the number of conflicts and Xt (e) the number
of conflicts edge e is part of at time t . Clearly, Xt ≤ �m

2
�
= xmax

and – since every edge is counted twice –
Í
e Xt (e) = 2Xt . With

probability at least 1/(ekm), (1+1) EA resolves all Xt (e) conflicts
the edge e is involved in. This lower bound does hold for RLS, too.
As a consequence we get

E(Xt+1 | Xt) ≤ Xt −
Í
e Xt (e)
ekm

= Xt − 2Xt
ekm

= Xt

�
1 − 2

ekm

�
.

This implies an expected drift of

E(Xt − Xt+1 | Xt) ≥ Xt

�
2

ekm

�
.

At last we apply the multiplicative drift theorem [9] and obtain a
runtime bound of

ekm

2 ln(1 +O(m2)) = O(∆m logm).

The final equality is due to k = Θ(∆). □

Note that every simple graph admits a proper coloring with
2∆ − 1 colors, since deg(e) ≤ 2∆ − 2 for all edges. Hence, setting
τ = ∆ − 2 in Theorem 6 we obtain the following result.

Corollary 7. On every graph with maximum degree ∆ and for
every initial coloring, RLS and (1+1) EA find a coloring withk = 2∆−1
colors in expected time O(∆m logm).

3.2 Reducing the Number of Conflicts
The number of conflicts (that is, the number of conflicting edge
pairs) can be as large as

�m
2
�
= Θ(m2) for a star graph or a complete

graph where all edges have the same color. We show that, for every
number of colors k ≥ ∆ and every initial coloring, the number of
conflicts quickly decreases to at mostm.

Theorem 8. For every graph G withm edges and maximum de-
gree ∆ and every initial coloring, the expected time until RLS or
(1+1) EA with k ≥ ∆ colors have found a solution with at most m
conflicts is O(m logm).

Proof. Let Xt again denote the number of conflicts at time t
and Xt (e) denote the number of conflicts edge e is part of at time t .

For edges e withXt (e) > 2, Lemma 2 states that there are at least
k − ∆ + ⌈(∆ − 1)/3⌉ alternative colors which lead to at most two
conflicts. The probability of executing a local move at e is at least
1/(em) for both RLS and (1+1) EA and the probability to recolor the
sampled edge with one of these colors is at least

k − ∆ + ⌈(∆ − 1)/3⌉
k

= 1 −
�
∆ − ⌈(∆ − 1)/3⌉

k

�

≥ 1 −
�
∆ − ⌈(∆ − 1)/3⌉

∆

�
≥ 1

4 .

Here, the last inequality stems from the observation that the term
in braces is maximal for ∆ = 4. Thus, if Xt (e) > 2 then with
probability at least 1/(4em)we getXt (e)−Xt+1(e) ≥ Xt (e)−2. The
same statement holds trivially for Xt (e) ≤ 2 as a local move at e
cannot increase the number of conflicts. As long as Xt ≥ m + 1, the
overall expected drift is thus

E(Xt − Xt+1 | Xt) ≥
Õ
e

1
4em · (Xt (e) − 2)

=
1

4em

 Õ
e

Xt (e) − 2m
!

=
1

4em (2Xt − 2m) .
The variable drift theorem [16] (Theorem 3 in [17]) then yields an
upper bound of

2em +
∫ m2

m+1

4em
2x − 2m dx

= 2em + 4em
∫ m2

m+1

1
2x − 2m dx

= 2em + 4em
�
ln(2x − 2m)

2

�m2

m+1

= 2em + 4em
�
ln(2m2 − 2m)

2 − ln 2
2

�
≤ 2em + 4em lnm. □

We remarkwithout proof that within expected timeO(∆m logm),
both RLS and (1+1) EA find a solution with at mostm/2 conflicts,
for every graph withm edges. This can be shown by waiting for
free or alternative colors to be applied, similarly to the proof of
Theorem 6.

3.3 General Lower Bounds
To complement our upper bounds and to establish a baseline for
good performance, we now turn to proving lower bounds for RLS
and (1+1) EA. We show two lower bounds that apply to arbitrary
connected graphs. As a first step, we show that the initial coloring
has Θ(m/k) conflicts with high probability.

Lemma 9. For every connected graph with m edges, if an edge
coloring is chosen uniformly at random with colors {1, . . . ,k} then
there are at leastm/(4k) conflicts on mutually disjoint edges, with
probability 1 − e−Ω(m).

To show Lemma 9, we first show the following combinatorial
result.

106

FOGA ’19, August 27–29, 2019, Potsdam, Germany Jakob Bossek and Dirk Sudholt

Lemma 10. Every connected graph withm edges admits a sequence
of mutually disjoint edges e1, . . . e2 ⌊m/2⌋ such that for all i with
1 ≤ i ≤ ⌊m/2⌋, e2i−1 and e2i are incident edges.

Proof. We prove the claim by induction overm. The claim is
trivial form ≤ 1. Assume that the claim holds form−2 and consider
any connected graph G withm ≥ 2 edges.

Consider a spanning tree T of G rooted at an arbitrary but fixed
vertex and denote by degT (v) the degree of a vertex v in T . We
consider leaves in T that have a maximum graph distance from the
root in the subgraph induced by T and call these deepest leaves.

If there is a deepest leaf u that is incident to at least two edges
not belonging to T , we remove two such edges. All vertices remain
connected viaT and hence we can decompose the remaining graph
of m − 2 edges inductively into ⌊(m − 2)/2⌋ = ⌊m/2⌋ − 1 further
edge pairs.

Otherwise, if there is a deepest leaf u, with a parent that we
call v , that is incident to exactly one edge e not belonging to T , we
remove e and {u,v} and the graph remains connected viaT \ {u,v}
since u is a leaf inT . The remaining graph can then be decomposed
inductively.

Otherwise all deepest leaves in T are also leaves in G. Fix a
deepest leaf u with a parent that we call v . If u has a sibling u ′ in
the tree then u ′ must be another deepest leaf as u was chosen to
have a maximum graph distance to the root. Then the edges {u,v}
and {u ′,v} are incident. Removing these edges leaves a connected
graph withm − 2 edges, which can be decomposed inductively.

If u does not have a sibling in T then, since there are at least 2
edges in the graph, v must have a parent in the tree that we callw .
We note that {u,v} and {v,w} are incident, and removing them
from the graph leaves a connected graph as there are no further
edges at u nor v . Removing {u,v} and {v,w} and decomposing the
remaining graph inductively as above completes the proof. □

Proof of Lemma 9. By Lemma 10 there is a sequence of mu-
tually disjoint edges e1, . . . , e2 ⌊m/2⌋ such that edges e2i−1 and e2i
are incident, for all 1 ≤ i ≤ ⌊m/2⌋. For each such edge pair the
probability that the two edges will be conflicting after a random
initialization is 1/k . These events are independent for all edge pairs,
hence we can apply Chernoff bounds. This yields that, with proba-
bility 1−e−Ω(m), at leastm/(4k) edge pairs e2i−1, e2i are conflicting
after initialization. □

The following lower bound follows now from Lemma 9 and
standard coupon collector arguments.

Theorem 11. The expected time for RLS or (1+1) EA to find a
proper k-coloring on any connected graph G , for any value of k ≤ m,
is Ω(m log(m/k)). This is Ω(m logm) if k = O(m1−Ω(1)); this is the
case, for example, for all regular graphs or graphs where δ = Ω(∆).

Proof. By Lemma 9, with probability 1 − e−Ω(m), the initial
coloring has at leastm/(4k) conflicts on mutually disjoint edges.
Assume that this happens and fix a conflicting pair. The conflict
can only be resolved if one of the two edges is being picked during
mutation. The probability for this event is at most 2/m for both
RLS and (1+1) EA.

The probability that a fixed conflicting pair is not resolved within
t := (m/2 − 1) ln(m/(4k)) mutations is at least�

1 − 2
m

�t
≥ e− ln(m/(4k)) = 4k

m
.

The probability that there is a conflict out of them/(4k) conflicts
that is not resolved after time t is at least

1 −
�
1 − 4k

m

�m/(4k)
≥ 1 − 1

e
.

This means that the expected optimization time is at least (1−1/e −
e−Ω(m)) · t = Ω(m log(m/k)). □

Theorem 11 shows that the upper bound from Corollary 7 is
asymptotically tight if ∆ = O(1) as then log(m/k) = Θ(logm).

We also give a lower bound that includes a factor of k (but no
logm factor).

Theorem 12. The expected time of RLS and (1+1) EA to find a
proper k-coloring on any connected graph with minimum degree
δ ≥ 2 and δ ≤ k ≤ m is at least Ω(km/(k − δ + 1)). This is Ω(km)
if k = δ + O(1), for example when the graph is ∆-regular and k ∈
{∆,∆ + 1}.

Proof. By Lemma 9, the probability of initializing with an opti-
mal solution is e−Ω(m).

The best case situation for finding a proper coloring is attained
when there is just one conflict (e1, e2), or two conflicts that share an
edge e1 and form a path of 3 edges. This is because if there are two
conflicts with disjoint edge pairs, or multiple conflicts that have
the same vertex as common vertex, multiple specific edges need to
be recolored to find the optimum in one step. This is impossible for
RLS and has probability O(1/m2) for (1+1) EA.

To find a proper coloring from a coloring with just one conflict,
it is necessary to recolor e1 or e2. For any such edge e , since there
are no other conflicts, at least δ − 1 colors are taken, hence the
number of free colors is at most k −δ + 1. The probability to recolor
one of the two involved edges and to pick a free color is at most
2(k − δ + 1)/(km) and the expected waiting time for this event is at
least km/(2(k − δ + 1)).

In the case of two conflicts with a shared edge e1, e1 must be
recolored with one of k − δ + 1 free colors, which has probability
at most (k − δ + 1)/(km). The expected waiting time in this case is
at least km/(k − δ + 1). □

Together, we obtain the following result for ∆-regular graphs.

Corollary 13. The expected time for RLS and (1+1) EA to find a
proper coloring on any ∆-regular connected graph, with k ≤ ∆+O(1),
is Ω(∆m +m logm).

4 RUNTIME BOUNDS FOR SIMPLE GRAPH
CLASSES

We now consider the performance of RLS and (1+1) EA on a range
of simple graph classes. We start with cycle graphs, that is, graphs
that consist of a single cycle visiting all vertices.

Theorem 14. For every initial coloring, the expected time for RLS
and (1+1) EA to find a proper 2-coloring on every cycle graph C2n
with an even number of nodes is O(m3).

107

Time Complexity Analysis of RLS and (1+1) EA for the Edge Coloring Problem FOGA ’19, August 27–29, 2019, Potsdam, Germany

Proof. We first review the notion of a line-graph L(G) of an
arbitrary graph G. The line-graph is a graph with one node for
each edge ofG and an edge between nodes if and only if the corre-
sponding edges in G are incident. It is easy to see that an optimal
edge-coloring of G corresponds to an optimal vertex-coloring of
L(G) and vice versa. Cycle graphs have the appealing property that
its line-graph is again a cycle graph with n nodes andm = n edges.
Since χ ′(G) = χ (L(G)) we can focus on vertex-coloring of L(G)
with 2 colors. An equivalent problem is to minimize the number of
monochromatic blocks which was studied by Fischer and Wegener
[11] in context of the Ising model on rings (cycle graphs). The au-
thors prove an upper bound of O(n3) function evaluations for RLS
and (1+1) EA respectively. This result directly implies a runtime
of O(m3) for edge-coloring of C2n with 2 colors. The key idea of
[11] is to consider connected monochromatic blocks and the length
of the shortest block in particular. They estimate the number of
so-called relevant steps, i. e., steps that either decrease the number
of monochromatic blocks or the length of the shortest block by
O(n2). The key argument is that the algorithms need to overcome
plateaus of length at most n/2. Here, random walk arguments yield
the quadratic bound. Since n such steps are sufficient we end up
with a runtime bound of O(n3) = O(m3). □

Note that cycle graphs with an odd number of edges do not admit
a proper 2-coloring and hence at least three colors are needed. The
additional color makes the problem much easier, because there is
always a free color for a conflicting edge.

Theorem 15. For every initial coloring, the expected time of RLS
and (1+1) EA to find a proper 3-coloring on a cycle graph C2n+1 with
an odd number of nodes is O(m logm).

Proof. Note that in C2n+1 we have 2∆ − 1 = 3 and hence the
theorem follows directly from Corollary 7. □

We also note for completeness that paths can be colored in the
same way as even cycles, with almost identical proofs.

Theorem 16. For every initial coloring, the expected time of RLS
and (1+1) EA to find a proper 2-coloring on a path withm edges is
O(m3).

Proof. Follows the same arguments as the proof of Theorem 14.
□

Now we consider star graphs, defined as a graph with a vertex
in the center of the graph, to which all edges are incident. This
implies ∆ =m.

Theorem 17. The expected time of RLS and (1+1) EA to find a
proper coloring with k = ∆ =m colors on a star graph withm edges
is bounded by O(m2).

Proof. Consider the number of conflicts Xt at time t ∈ N0
and denote by Xt (i) the number of edges colored with color i ∈
{1, . . . ,m} at time t . Note that Xt (i) ≥ 1 implies that there are
(Xt (i)− 1) edges which shall be colored differently with free colors.
Note further that

Xt =
mÕ
i=1

�
Xt (i)
2

�
=

1
2

mÕ
i=1

Xt (i) · (Xt (i) − 1).

Call the total number of free colors s . With the considerations
from above we can conclude s =

Ím
i=1 max{0,Xt (i) − 1}. The max-

function ensures that colors that are not used so far do not have a
negative contribution to s .

Note that in both Xt and s all values Xt (i) ≤ 1 lead to a con-
tribution of 0, hence we can focus on values Xt (i) ≥ 2. Using
Xt (i) ≤ 2(Xt (i) − 1) for Xt (i) ≥ 2,

Xt =
1
2

Õ
i : Xt (i)≥2

Xt (i) · (Xt (i) − 1)

≤
Õ

i : Xt (i)≥2
(Xt (i) − 1)2

≤
� Õ
i : Xt (i)≥2

(Xt (i) − 1)
�2

=
� Õ
i : Xt (i)≥2

max{0,Xt (i) − 1}
�2
= s2,

where the last inequality follows from the Cauchy-Schwarz inequal-
ity. We conclude that s ≥ √

Xt .
If Xt > 1 we can improve by selecting a single edge and recol-

oring this edge with a free color. This happens with probability
at least s/(ekm) ≥ s/(em2) for both RLS and (1+1) EA. Hence, the
overall expected drift is

E(Xt − Xt+1 | Xt) ≥ 1
2

mÕ
i=1

Xt (i) · (Xt (i) − 1) ·
� s

em2

�

= Xt ·
� s

em2

�

≥ X
3/2
t

em2 .

With xmin = 1 ≤ Xt ≤ �m
2
�
< m2 the variable drift theorem yields

an upper bound of

em2 +
∫ m2

1

�
em2

�
x−3/2 dx

= em2 + em2
∫ m2

1
x−3/2 dx

= em2 + em2
�
− 2√

x

�m2

1
= em2 + em2

�
2 − 2

m

�

≤ 3em2 − 2em = O(m2). □

5 A BOUND FOR TREES
We now show that RLS can efficiently edge-color arbitrary trees
with ∆ colors. We focus on RLS instead of (1+1) EA as the analysis
becomes more involved. Even on simple graphs such as cycles,
Fischer and Wegener’s work shows that the analysis of (1+1) EA
becomes way more complicated than that of RLS [11] and it is not
clear whether (1+1) EA has any advantage over RLS (we shall revisit
this question experimentally, in Section 7).

Theorem 18. On every tree G with ℓ := ℓ(G), RLS with k = ∆
finds a proper ∆-coloring in expected time O(∆ℓ2m logm).

Proof. Let h be the height of the tree, i. e., the length of the
longest simple path from the root to any leaf. Note that h ≤ ℓ ≤ 2h,

108

FOGA ’19, August 27–29, 2019, Potsdam, Germany Jakob Bossek and Dirk Sudholt

hence we only need to show an upper bound ofO(∆h2m logn). For
a vertex v denote by d(v) the depth of v , that is, the length of the
unique simple path from v to the root.

We identify the initial conflicts with tags 1, 2, 3, . . . that move
with the conflicts. Once a conflict is resolved, the tag disappears;
until this happens, the tag is called active. We denote by c(i) the
color of the conflict tagged i . Define φt (i) := h − d(vt (i)), where
vt (i) denotes the common vertex of the conflict tagged i at time t . If
the tag has disappeared from the graph, we define φt (i) := 0. Note
that, while the tag is active, 1 ≤ φt (i) ≤ h as the common vertex of
any conflict cannot be a leaf, hence 0 ≤ d(vt (i)) ≤ h − 1.

By Lemma 5, a conflict can move up or down in the tree as long
as it is not blocked by another conflict (see Figure 1 for an example
of a blocked conflict). While there is no blocking conflict, there
is only at most one recolor operation that would move a conflict
closer to the root, thus increasing φt , while there is at least one
recolor operation that would move it away from the root, thus
decreasing φt . While φt (i) = 1 the conflict has reached a leaf and
can be resolved by recoloring the edge incident to the leaf. However,
blocking conflicts complicate the situation as they can eliminate
moves that decrease φt . On the other hand, the blocking conflict
has an advantage as it does not have any moves that can increase
φt . We address this by considering the following model that reflects
how conflicts move through the tree.

Consider a conflict tagged i and an edge e that connects levels
d(vt (i)) and d(vt (i) + 1). Assume that e is incident to both edges of
another conflict tagged j on levels d(vt (i) + 1) and d(vt (i) + 2). If a
recolor operation picks edge e and color c(j) then we swap tags i
and j . This is done regardless of whether the recolor operation is ac-
cepted or not. The idea behind this swap is that while a conflict may
be blocked by another conflict, tags can roam more freely. We will
show in the following that the φt -values of tags are stochastically
dominated by a fair random walk.

Lemma 19. For every tag i we have

Pr (φt+1(i) = φt (i) + 1) ≤ 1
km
.

Proof. A tag can only move up under the following conditions.
If the two edges of conflict i are on the same level, the only way
the tag can move up is if it is swapped with a tag higher up in the
tree. This requires a specific recolor operation that occurs with
probability 1/(km).

If the two edges of the conflict are on different levels, tag i cannot
be swapped “upwards”, but a recolor operation canmove the conflict
up. Let e1 be the upper edge of the conflict and e2 be the unique
edge incident to e1 on the level above. For a recolor operation to
move the conflict up, e1 must be recolored with color c(e2). This
operation has probability 1/(km). □

Lemma 20. For every active tag i we have

Pr (φt+1(i) ≤ φt (i) − 1) ≥ 1
km
.

Proof. Consider an edge e = {v1,vt (i)} of the conflict where
d(v1) = d(vt (i)) + 1.

First assume that e has a free color. Note that this is implied by
φt (i) = 1 as then e is incident to a leaf; since two edges at v are
colored c(i) and deg(e) = deg(v) ≤ ∆ there must be a free color by

the pigeon-hole principle. Choosing a free color would remove the
tag, yielding φt+1(i) = 0 ≤ φt (i) − 1. The probability of applying a
free color to e is at least 1/(km).

Now assume that e has no free color, which implies φt (i) ≥ 2. By
Lemma 5, if there is no other conflict that has v1 as shared vertex,
there must be a free color or an alternative color that moves the
conflict further down in the tree, leading to φt+1(i) = φt (i)− 1. The
probability for this event is at least 1/(km).

Finally, we assume that e has no free color but there is a conflict
tagged j with v1 as shared vertex. We consider two sub-cases. First
assume that e is incident to at least 2 edges of color c(i). Then,
arguing similarly to Lemma 3, there must be two colors that, when
applied to e , only lead to one conflict that involves e . More formally,
let x be the number of colors that appear at least twice. Then if
there is no free color the number of edges incident to e must respect
x · 2 + (k − x) · 1 ≤ 2∆ − 2, which is equivalent to x ≤ ∆ − 2.
With probability at least 1/2, conflict i will be declared resolved (cf.
Section 2.2). The probability for these events is at least 2/(km)·1/2 =
1/(km).

If e is only incident to one edge of color c(i) (the other edge of
conflict i) then trying to recolor e with color c(j) will be rejected as
it would increase the number of conflicts. However, it would swap
tags i and j and, consequently, φt+1(i) = φt (i) − 1. The probability
for this recolor operation is 1/(km). □

We conclude thatφt is dominated by a lazy2 fair randomwalk on
{0, . . . ,h} where the probability of changing the current state is at
least 1/(km). By the first statement of Lemma 27 in the appendix, the
expected time to reach state 0 is at most h2km. Since there are up to
m2 fair randomwalks for all tags (which are not necessarily indepen-
dent), the third statement of Lemma 27 yields that the expected time
for all tags to disappear is O(h2km log(m2)) = O(h2km logm). □

6 TOWARDS AN ANALYSIS OF TOROIDS
We now turn our attention to the performance of RLS on toroids,
which are essentially two-dimensional grids with edges “wrapping
around”. The reason for studying toroids is that they represent
a simple graph class featuring many cycles. We will see in the
following that cycles play a key role in edge coloring, and that
the analysis can become quite involved. We believe that many of
the arguments applied to bipartite toroids also apply to general
∆-regular bipartite graphs, or even arbitrary bipartite graphs.

Toroids are formally defined as graphs with vertices (i, j) for
1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 and edges from (i, j) to vertices (i + 1, j),
(i−1, j), (i, j+1) and (i, j−1), where for ease of notation we identify
indices 0withn1 andn1+1with 1 for the first argument and likewise
for n2 and the second argument. The number of vertices in a toroid
is n1 · n2.

We imagine a toroid drawn as a 2-dimensional grid, with edges
wrapping around, such that edges are drawn either horizontally
or vertically (see Figure 2 for an example). We speak of rows and
columns in an obvious way.

Note that a toroid with parameters n1,n2 is bipartite if both n1
and n2 are even. We always assume that n1,n2 ≥ 4 as then the
toroid is 4-regular, that is, every vertex has degree 4. This implies

2The term lazy means that the random walk has a positive self-loop probability.

109

Time Complexity Analysis of RLS and (1+1) EA for the Edge Coloring Problem FOGA ’19, August 27–29, 2019, Potsdam, Germany

that the number of edges ism = 2n. In the following, we tacitly
assume that all toroids are 4-regular.

Bipartite toroids are 4-edge-colorable, and the number of proper
colorings is exponential. For example, all colorings where rows
are colored with alternating colors 1 and 2 (say) and columns are
colored with alternating colors 3 and 4, are proper colorings. For
each row and column we can choose independently which of the
two colors comes first, which gives rise to 2n1+n2 different proper
colorings. There are many further proper colorings that do not
follow patterns of rows and columns (see Figure 2 for a coloring
that is nearly proper). Note that, since k = 4 colors are used and
toroids are k-regular, every vertex in every proper coloring must
be incident to exactly one edge of each color. The orientation of
these edges can vary between neighboring vertices.

For improper colorings we show that there exist unique paths
of alternating colors that start and end in a common vertex of a
conflict. We refer to a simple path as i-j-path if colors i and j are
alternating on the path.

Lemma 21. Consider a conflict (e1, e2) with color i and common
vertex v , where e1 = {v1,v} and e2 = {v,v2}. Then the following
statements hold:

(1) For all colors j , i , there is a unique i-j-path that starts at v ,
uses e1 but not e2 and ends in a vertexw that is the common
vertex of a conflict. The same holds when the roles of v1 and
v2 are swapped.

(2) For all colors j , i , the unique i-j-path starting with e1 does
not share any edges with the unique i-j-path starting with e2.

(3) All i-j-paths where j is a free color at v end in a different
conflict.

Proof. We follow this i-j-path, starting fromv andmoving tov1.
For every vertex u on this path, the following holds. If u has more
than one incident edge colored j or u has more than one incident
edge colored i ,w = u and the claim holds. Ifu only has one incident
edge colored i or j, by the pigeon-hole principle u must have two
incident edges of a different color and we can take w = u. If the
above cases do not occur, u has exactly one i-colored edge and
one j-colored edge, and the path can be extended, while remaining
unique.

The path cannot have any loops, hence it must reach a conflict
without using edge e2 or return to v via e2. We show that the latter
case is impossible. Assume for a contradiction that it returns to v
via e2, closing a cycle. Then the first and the last edge of the path
were colored i . Since colors must alternate on the path, the cycle
must have odd length, contradicting the assumption that the toroid
is bipartite. Hence the path must end in a conflict without using e2.

This argument also shows that the unique i-j-path starting with
e1 has no common edges with the unique i-j-path starting with e2,
proving the second statement.

For the third statement, if j is a free color at v , there can be no
i-j paths looping back to v as the last edge cannot be colored j (as j
is a free color at v) nor i (as it would close an odd cycle). □

Lemma 21 in particular implies that every improper coloring
must have at least two conflicts.

The following lemma shows that conflicts can move along i-j
paths, where i is the color of the conflict and j is a free color at

its common vertex. After one such step, the roles of i and j are
swapped. A requirement for the lemma to hold is that no other
conflicts interfere.

Lemma 22. Consider a conflict (e1, e2) with color i and common
vertex v , where e1 = {v1,v} and e2 = {v,v2}. Assume there is no
other conflict that has v , v1 or v2 as common vertex. Then

(1) there is a unique free color j at v
(2) the only accepted moves involving the conflict (e1, e2) are those

where e1 or e2 respectively is recolored j
(3) after such a move is applied, the conflict has color j and i is a

free color at its joint vertex.

Proof. There must be a unique free color at v since deg(v) = 4
and the two remaining edges must have different colors to each
other and different from i (as otherwise there would be another
conflict with v as common vertex). Let the free color be j.

Since there is no conflict with v1 as common vertex, all colors
must be present exactly once at v1. The same holds for v2.

If e1 is recolored j then e1 and e2 stop being conflicting, and e1
starts being conflicting with the unique j-colored edge at v . This is
a fitness-neutral move that moves the conflict towards a new joint
vertex v1.

If e1 is recolored s ∈ {1, . . . , c}\{i, j} then the number of conflicts
increases as there is one s-colored edge at v1 and another s-colored
edge atv . Hence the only accepted move for e1 is to recolor is with j ,
the free color at v .

All the above holds analogously for e2, completing the proof of
the second statement.

The third statement holds since, before applying themove, e1 and
e2 are the only i-colored edges atv1 andv2, respectively. When one
of these edges is recolored, i becomes a free color at the respective
vertex. □

We also characterize edges that cannot be recolored as they lead
to rejected moves.

Lemma 23. Consider an edge e that is not part of any conflict. If
e has an end point where all other colors are present then all local
moves recoloring e will be rejected.

Proof. Let e = {u,v} and w. l. o. g. let all other colors be present
at v . Since e is not part of any conflict, no conflicts will be resolved
by recoloring e . However, a new conflict will be created with v as
common vertex. Thus the number of conflicts will increase and the
move will be rejected. □

In the following, we consider the time to resolve the last two
remaining conflicts.We show a lower bound ofΩ(m3)when starting
with a particular coloring with just two conflicts. Then we argue
why we believe that this bound is asymptotically tight and why
this is difficult to prove formally.

Theorem 24. For every bipartite toroid, there is a search point with
just two conflicts from which RLS with k = 4 colors needs expected
time Ω(m3) to find a proper 4-coloring.

Proof. A cycle is called chordless if no two vertices are con-
nected by an edge that does not itself belong to the cycle (the cycle
highlighted in Figure 2 is chordless).

110

FOGA ’19, August 27–29, 2019, Potsdam, Germany Jakob Bossek and Dirk Sudholt

Figure 2: Sketch of a worst-case initial coloring for toroids.
The cycle drawn in bold uses only colors red and blue, with
colors alternating, bar two conflicts.

We construct a coloring with two conflicts lying on a chordless
cycle C of length Θ(m). The colors on the cycle are alternating,
bar the two conflicts. The conflicts are placed at an initial distance
of Θ(m). A chordless cycle of length Θ(m) can be constructed by
“snaking” left and right and leaving a safety gap to parts of the cycle
that are already constructed. (Taking care when choosing those
gaps that the remainder of the graph can still be properly colored.)
Figure 2 shows an example. Note that the construction can easily
be scaled up for larger graphs by duplicating rows and/or columns
appropriately.

Call the common vertices of the two conflicts v1 and v2, respec-
tively. We have two i-j-paths between v1 and v2 that together form
the cycleC , where i and j are the colors of the conflicts and the free
colors at v1 and v2. We call these paths augmenting paths (inspired
by well-known algorithms for maximummatchings and subsequent
studies of EAs [13]) as swapping colors on all edges of the path
yields a fitness improvement (and in this case, a proper coloring).

We shall pay particular attention to the length of the shortest
augmenting path. Once this length has reduced to 1, RLS is able
to recolor this edge and, if the right color is chosen, this yields a
proper coloring. The idea of considering the shortest augmenting
path is borrowed from Fischer and Wegener’s analysis of coloring
problems on cycle graphs [11]. On the cycle C , the length of the
shortest augmenting path corresponds to the graph distance of v1
and v2 on the subgraph induced by C .

By Lemma 23, as long as v1 and v2 are not adjacent on the cycle,
only local moves at the conflicting edges will be accepted. This is
because the cycle is chordless and v1 and v2 can only be adjacent if
they are adjacent on the cycle. All other vertices have edges of all
four colors, thus every non-conflicting edge meets the conditions
of Lemma 23. In other words, the only accepted moves are those
moving one of the conflicts along the cycle, unless the conflicts’

common vertices have reached a distance of 1. Once this happens,
we pessimistically assume that a proper coloring has been found.

Both conflicts can travel in either direction with equal probability
1/(km). This implies that, if the length of the shortest augmenting
path is less than |C |/2, there are two local moves that reduce this
length by 1, and there are two local moves that increase this length
by 1. If the maximum possible length of |C |/2 is reached3, there are
4 local moves that decrease the length of the shortest augmenting
path.

Hence the process can be regarded as a fair random walk on
states {1, 2, 3, . . . , |C |/2} with a reflecting state |C |/2 and transition
probabilities to neighboring states of 2/(km) (and 4/(km) in the
case of |C |/2). With the remaining probability, the random walk
stays put.

Since |C | = Θ(m), the initial distance is Θ(m), and transitions
happen with probability 4/(km), by Lemma 27 the expected time
to reach state 1 is Θ(m3). □

It seems plausible that the last non-optimal fitness level is the
most difficult one, in the worst case. We conjecture that the lower
bound from Theorem 24 is tight and that the last non-optimal
fitness level is optimized in expected time O(m3) for all colorings
with two conflicts remaining. We do not have a formal proof for
this conjecture for reasons explained in the following.

Call the common vertices of the two conflicts v1 and v2. By
Lemma 21 there are two unique i-j-paths connecting v1 and v2
that form a cycle C . As in the proof of Theorem 24 we consider the
length of the shortest augmenting path, or equivalently the graph
distance between the conflicts’ common vertices on C . The proof
of Theorem 24 has already established an upper bound of O(m3)
for reaching a state 1, assuming that C is chordless. Note that from
state 1 there is a probability of at least 1/(km) = Ω(1/m) of finding
the optimum in the next step. There is also a probability of at most
3/m = O(1/m) of making any other accepted move (for instance,
increasing the current state) as in this situation, by Lemma 23, only
moves affecting one of the 3 edges that are part of a conflict may be
accepted. Hence, there is a constant probability that the optimum
will be found within the nextO(m) steps before any other accepted
move is made. If this is not the case, we repeat the above arguments.
Thus, if suffices to bound the expected time to reach state 1 by
O(m3).

A problem arises if C is not chordless and if v1 and v2 are con-
nected by an edge not on C . Let a < {i, j} denote the color of
{v1,v2}. Both conflicts must have the same color i as otherwise
every path betweenv1 andv2 would have even length and the edge
{v1,v2} would close an odd cycle. But in this situation the edge
{v1,v2} can be recolored j in a fitness-neutral operation as j is a
free color for both v1 and v2 (note that Lemma 23 does not apply).
This means that the free color at both v1 and v2 switches from j
to a, and there is a corresponding cycle C ′ with alternating colors
i-a betweenv1 andv2 on which the conflicts are able to move. Note
that the colors may switch back to i and j at {v1,v2}4, but the colors
might also switch again towards arbitrary combinations of colors
on further cycles C ′′,C ′′′, and so on.

3Note that |C |/2 is an integer as C must be of even length.
4In other words, if we consider the state graph of all possible colorings that can be
reached via fitness-neutral local moves, that graph is undirected.

111

Time Complexity Analysis of RLS and (1+1) EA for the Edge Coloring Problem FOGA ’19, August 27–29, 2019, Potsdam, Germany

The same effect may happen even in chordless cycles when the
distance of the shortest augmenting path has reduced to 1. Then
the edge {v1,v2} is incident to two edges of the two colors different
from i and j. Recoloring the edge with such a color is a fitness-
neutral move as it removes the two conflicts on C , while creating
two new conflicts with joint vertices v and w . This switches the
random walk to another cycle C ′, while the length of the shortest
augmenting path remains at 1. Even ifC was chordless,C ′ may not
be chordless. Hence, to get a rigorous upper bound of O(m3) for
the last fitness level, we would have to assume that all cycles that
can ever be reached are chordless.

The situation is complicated further when more than two con-
flicts are present. Other conflicts may interfere with the process
described above in various ways:

• They can block augmenting paths at one end. While this
is the case (and no other interference happens), one end of
the augmenting path will be fixed, while the other end can
perform a random walk. Then the previous random walk
arguments can still be applied with transition probabilities
reducing from 2/(cm) to 1/(cm).

• Augmenting paths may become blocked at both ends, in
which case they cease to be “augmenting”. For trees we used
the idea of tags being swapped, so that tags could roam more
freely even though the original conflicts were being blocked.
Tags could always be removed when reaching leaves. It is
not clear whether or how this idea can be applied for toroids
as we are lacking conditions on when tags will disappear.

• If two conflicts share the same common vertex v , there are
two free colors at v , possibly increasing the number of aug-
menting paths.

• Augmenting paths that are blocked can become unblocked,
which may suddenly and drastically increase the length of
the shortest augmenting path.

It seems plausible that search points with many conflicts have
many augmenting paths. However, proving this does not seem ob-
vious, even when we consider paths that are blocked on exactly one
end as augmenting paths. Even proving that a single augmenting
path exists is not obvious. It is possible to construct colorings where
several conflicts all block each other on both ends. Hence, it is an
open problem to prove or disprove that in every improper coloring
there exist conflicts that are not blocked on both ends.

Note, however, that even if all conflicts end up being blocked, it
may still be likely that conflicts become unblocked once other con-
flicts have moved about. And all the above considerations arise from
a worst-case perspective, and trying to prove statements that apply
to every improper coloring. Observing simulations suggests that
blocked conflicts does not seem to be a real issue for performance.
In all runs observed, RLS found a proper coloring in a time that
seems close to a function am3 for a small constant a (see Section 7).
We therefore formulate the following conjecture for future work.

Conjecture 25. For every bipartite toroid G and every initial
coloring, RLS finds a proper 4-coloring in expected time O(m3).

7 EXPERIMENTS
In the following we supplement our theoretical findings with ex-
tensive experimentation. We consider all graph classes analyzed

in the foregoing sections: paths, even cycles, star graphs, binary
trees as a special case of trees and toroidal graphs with dimensions
n1 = n2 =

√
n and

√
n an even integer. Additionally, we consider

complete graphsKn with evenn, complete bipartite graphsKn/2,n/2
with equally sized partitions and d-dimensional hypercubes as spe-
cial cases of ∆-regular graphs. It seems natural to consider the
number of edges m as an upper limit for the size of the graphs.
Here, we perform experiments for graphs with at mostm = 512
edges. Note that this allows values ofm ∈ {4, 12, 32, 80, 192, 448}
for hypercubes, butm ∈ {1, 2, . . . , 512} for, e. g., paths. For reasons
of comparability and to keep the computational effort justifiable
we take the values for the hypercube as the baseline and consider
similar values for all other graph classes. For statistical soundness
we perform 50 independent runs on each graph instance for both
RLS and (1+1) EA and measure the number of function evaluations
until a proper coloring with χ ′(G) colors is generated for the first
time. Plots of the average running times of RLS5 and fitted regres-
sion models with 95% confidence intervals are depicted in Figure 3.
Accompanying results of the regression analysis are provided in
Table 2.6 A visual inspection of the fitted regression curves reveals
that the models seem to fit the data very well. This observation
is supported by the R2 indicator and the root mean squared error
(RMSE). While the former measures the fraction of variation in
the data explained by the model (the closer to 1 the better), the
latter describes the average deviation of predicted values and actual
observations from the data. The R2 values are ≥ 0.99 for all trained
models, indicating a very good fit. This is supported by the low
RMSE values (relative to the potential range of fitness evaluations
for the corresponding graph class).

Moreover, we observe a clear pattern in the quotient of the
estimated model coefficients a for (1+1) EA and RLS which are all
very close to e ≈ 2.71. Since e reflects the waiting time for (1+1) EA
to perform a single local move, this suggests that (1+1) EA is most
effective when only recoloring a single edge.

In summary, the experimental study supports all theoretical
results obtained in this paper.

In all graphs studied here, the runtime was bounded by, or is
conjectured to be bounded by O(∆ℓ2m logm). (In some cases, such
as cycles, paths, star graphs or potentially toroids, the logm factor
may be dropped.) The experiments gave further strong evidence
for this bound for further graph classes, including hypercubes,
complete graphs and complete bipartite graphs. In all cases we
obtained a very good fit with functions a∆ℓ2m logm or a∆ℓ2m with
very reasonable leading constants a. Again, the model suitability is
supported by R2-values close to 1 and very low RMSE. In fact, in
particular for complete bipartite graphs and all interesting special
cases of bipartite graphs, i. e., toroids, complete binary trees and
hypercubes, RMSE values are negligible and the model fit is almost
perfect. We hence state the following conjecture for future work.

Conjecture 26. RLS and (1+1) EA find a proper ∆-coloring for
every bipartite graph G with maximum degree ∆ and ℓ := ℓ(G) in
expected time O(∆ℓ2m logm).

5We do not show plots for (1+1) EA since they do not reveal any more information.
6For regression analysis the statistical programming language R [23] (version 3.5.2)
was used. In particular we used the lm(...) function to fit regression models.

112

113

Time Complexity Analysis of RLS and (1+1) EA for the Edge Coloring Problem FOGA ’19, August 27–29, 2019, Potsdam, Germany

RLS and (1+1) EA are able to find proper colorings with a minimum
number of ∆ colors efficiently, for all initial colorings (see Table 1
for details).

We then considered toroids as a graph class with many cycles,
where the analysis of RLS turned out to be surprisingly complex.
We presented a lower bound on the expected time to resolve the
final two conflicts, starting from a worst-case initial coloring with
two conflicts. Then we discussed the challenges involved in proving
rigorous upper bounds for the time to resolve the last two conflicts,
and for analysing dynamics with more than two conflicts. Experi-
ments support our conjecture that RLS finds proper ∆-colorings on
bipartite toroids in expected time O(m3).

More generally, both theory and experiments support the con-
jecture that RLS can find proper ∆-colorings on all bipartite graphs
in expected time O(∆ℓ2m logm).

Avenues for future work include proving the above conjectures
and finding graphs that are hard to color optimally for RLS. We
know that such graphs must exist as edge coloring is NP-hard.
However, RLS and (1+1) EA performed well on all graph classes
that were so far considered theoretically and/or experimentally.

ACKNOWLEDGMENTS
The authors thank Thomas Sauerwald for insightful discussions and
references on random walks. Jakob Bossek acknowledges funding
from COST Action CA151407: Improving Applicability of Nature-
Inspired Optimisation by Joining Theory and Practice (ImAppNIO).

REFERENCES
[1] Noga Alon. 2003. A Simple Algorithm for Edge-coloring Bipartite Multigraphs.

Inf. Process. Lett. 85, 6 (2003), 301–302.
[2] Anne Auger and Benjamin Doerr (Eds.). 2011. Theory of Randomized Search

Heuristics – Foundations and Recent Developments. Number 1 in Series on Theo-
retical Computer Science. World Scientific.

[3] Leonid Barenboim and Michael Elkin. 2013. Distributed Graph Coloring: Funda-
mentals and Recent Developments. Morgan & Claypool.

[4] Leonid Barenboim, Michael Elkin, and Tzalik Maimon. 2017. Deterministic Dis-
tributed (∆+o(∆))-Edge-Coloring, and Vertex-Coloring of Graphs with Bounded
Diversity. In Proceedings of the ACM Symposium on Principles of Distributed Com-
puting (PODC ’17). ACM, 175–184. https://doi.org/10.1145/3087801.3087812

[5] Jakob Bossek, Frank Neumann, Pan Peng, and Dirk Sudholt. 2019. Runtime
Analysis of Randomized Search Heuristics for Dynamic Graph Coloring. In
Proceedings of the 21th Annual Genetic and Evolutionary Computation Conference
(GECCO ’19). ACM, Prague, Czech Republic. https://doi.org/10.1145/3321707.
3321792

[6] Yi-Jun Chang, Qizheng He, Wenzheng Li, Seth Pettie, and Jara Uitto. 2018. The
Complexity of Distributed Edge Coloring with Small Palettes. In Proceedings of
the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’18). SIAM,
2633–2652.

[7] Raymond Chiong, Thomas Weise, and Zbigniew Michalewicz (Eds.). 2012. Vari-
ants of Evolutionary Algorithms for Real-World Applications. Springer.

[8] Richard Cole, Kirstin Ost, and Stefan Schirra. 2001. Edge-Coloring Bipartite
Multigraphs in O (E logD) Time. Combinatorica 21, 1 (2001), 5–12.

[9] Benjamin Doerr, Daniel Johannsen, and Carola Winzen. 2012. Multiplicative
Drift Analysis. Algorithmica 64, 4 (01 Dec 2012), 673–697.

[10] Thomas Erlebach and Klaus Jansen. 2001. The Complexity of Path Coloring
and Call Scheduling. Theoretical Computer Science 255, 1 (2001), 33–50. https:
//doi.org/10.1016/S0304-3975(99)00152-8

[11] Simon Fischer and Ingo Wegener. 2005. The One-dimensional Ising Model:
Mutation versus Recombination. Theoretical Computer Science 344, 2–3 (2005),
208–225.

[12] Mohsen Ghaffari, Fabian Kuhn, Yannic Maus, and Jara Uitto. 2018. Deterministic
Distributed Edge-coloring with Fewer Colors. In Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing (STOC 2018). ACM, 418–430.
https://doi.org/10.1145/3188745.3188906

7https://www.cost.eu/actions/CA15140/

[13] Oliver Giel and Ingo Wegener. 2003. Evolutionary Algorithms and the Maximum
Matching Problem. In Proceedings of the 20th Annual Symposium on Theoretical
Aspects of Computer Science (STACS ’03). Springer-Verlag, Berlin, Heidelberg,
415–426.

[14] Ian Holyer. 1981. The NP-Completeness of Edge-Coloring. SIAM J. Comput. 10, 4
(1981), 718–720. https://doi.org/10.1137/0210055

[15] Thomas Jansen. 2013. Analyzing Evolutionary Algorithms – The Computer Science
Perspective. Springer.

[16] Daniel Johannsen. 2010. Random Combinatorial Structures and Randomized Search
Heuristics. Ph.D. Dissertation. Universität des Saarlandes, Saarbrücken, Germany
and the Max-Planck-Institut für Informatik.

[17] Johannes Lengler. 2017. Drift Analysis. CoRR (2017). http://arxiv.org/abs/1712.
00964

[18] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[19] Jayadev Misra and David Gries. 1992. A Constructive Proof of Vizing’s Theorem.
Inform. Process. Lett. 41, 3 (1992), 131–133. https://doi.org/10.1016/0020-0190(92)
90041-S

[20] Frank Neumann. 2008. Expected Runtimes of Evolutionary Algorithms for the
Eulerian Cycle Problem. Computers &Operations Research 35, 9 (2008), 2750–2759.

[21] Frank Neumann and IngoWegener. 2004. Randomized Local Search, Evolutionary
Algorithms, and the Minimum Spanning Tree Problem. In Proceedings of the 6th
Annual Genetic and Evolutionary Computation Conference (GECCO ’04). Springer
Berlin Heidelberg, 713–724.

[22] Frank Neumann and Carsten Witt. 2010. Bioinspired Computation in Combinato-
rial Optimization – Algorithms and Their Computational Complexity. Springer.

[23] R Core Team. 2018. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

[24] Jens Scharnow, Karsten Tinnefeld, and Ingo Wegener. 2005. The Analysis of
Evolutionary Algorithms on Sorting and Shortest Paths Problems. Journal of
Mathematical Modelling and Algorithms 3, 4 (2005), 349–366. https://doi.org/10.
1007/s10852-005-2584-0

[25] Dirk Sudholt. 2005. Crossover is Provably Essential for the Ising Model on Trees.
In Proceedings of the 7th Annual Genetic and Evolutionary Computation Conference
(GECCO ’05). ACM, 1161–1167.

[26] Dirk Sudholt and Christine Zarges. 2010. Analysis of an Iterated Local Search
Algorithm for Vertex Coloring. In Algorithms and Computation. Springer Berlin
Heidelberg, 340–352.

[27] David P Williamson, Leslie A Hall, J A Hoogeveen, Cor A J Hurkens, Jan Karel
Lenstra, Sergey Vasil’evich Sevast’janov, and David B Shmoys. 1997. Short Shop
Schedules. Operations Research 45, 2 (1997), 288–294. https://doi.org/10.1287/
opre.45.2.288

[28] Carsten Witt. 2005. Worst-case and Average-case Approximations by Simple
Randomized Search Heuristics. In Proceedings of the 22nd Annual Conference
on Theoretical Aspects of Computer Science (STACS’05). Springer-Verlag, Berlin,
Heidelberg, 44–56.

A RANDOMWALK TOOLS
The following results on fair random walks are folklore and/or
follow from standard arguments. We gather them here as we are
not aware of a reference presenting these statement in this form.
The lemma is used in the main part and may be of future use.

Lemma 27. Consider a fair random walk Xt on {0, . . . ,k} where
0 is an absorbing state and k is a reflecting state. More formally,
abbreviatingpi , j := Pr (Xt+1 = j | Xt = i), for all 0 < i < k ,pi ,i+1 =
pi ,i−1 = 1/2, p0,0 = 1 and pk ,k−1 = 1. Let T be the first hitting time
of state 0. Then the following statements hold:

(1) For all X0, E (T | X0) = X0(2k − X0 − 1) < k2.
(2) For all X0 and all r ∈ N, Pr �T ≥ 2rk2 | X0

� ≤ 2−r .
(3) Consider s > 1 not necessarily independent random walks with

the given transition probabilities. Let T (s) denote the time for

all s random walks to hit state 0. Then E
�
T (s)

�
= O(k2 log s).

All statements also hold for a lazy random walk with a self-loop
probability of 1 − p, when multiplying all time bounds by 1/p.

Proof. The first statement follows from the following folk-
lore argument. Imagine a fair random walk X ′

t on a state space
{0, . . . ,k, . . . , 2k − 1} where states 0 and 2k − 1 are both absorbing.

114

FOGA ’19, August 27–29, 2019, Potsdam, Germany Jakob Bossek and Dirk Sudholt

Now, for every 0 ≤ i ≤ k −1, state i is identified with state 2k −1−i .
Then X ′

t is identical to Xt , but the reflecting state k has been re-
placed by an absorbing state 2k − 1. Now gambler’s ruin, applied to
X ′
t with an initial state of X0, yields E (T | X0) = X0(2k − X0 − 1).

The right-hand side is at most k2.
The second statement follows from standard arguments on in-

dependent phases. By the first statement and Markov’s inequality,
Pr

�
T ≥ 2k2

� ≤ 1/2, irrespective of the initial state X0. Consider
r phases, each of 2k2 subsequent steps, then the probability that
state 0 will be missed in all r phases is 2−r .

The third statement follows from applying the second statement
with r := log(s) + 1. This implies that a fixed random walk will
not have hit state 0 with probability at most 2−r = 1/(2s) after

a period of 2rk2 steps. Taking a union bound over all s random
walks, the probability that one of them will not have hit state 0 is
at most 1/2. In this case we reiterate the above arguments with
another period of 2rk2 steps. In expectation, only 2 periods are
needed, hence E

�
T (s)

�
≤ 4rk2 = O(k2 log s).

For the lazy random walk, the first statement still holds as the
expected waiting time for a transition is 1/p, thus E (T | X0) =
X0(2k − X0 − 1)/p. The applications of Markov’s inequality and
the union bound in the proofs of the second and third statements,
respectively, remain unaffected when introducing a factor of 1/p
appropriately. □

115

