
Solving Scalarized Subproblems within
Evolutionary Algorithms for

Multi-criteria Shortest Path Problems

Jakob Bossek(B) and Christian Grimme

Information Systems and Statistics, University of Münster, Münster, Germany
{bossek,christian.grimme}@uni-muenster.de

Abstract. The NP-hard multi-criteria shortest path problem (mcSPP)
is of utmost practical relevance, e. g., in navigation system design and
logistics. We address the problem of approximating the Pareto-front of
the mcSPP with sum objectives. We do so by proposing a new mutation
operator for multi-objective evolutionary algorithms that solves single-
objective versions of the shortest path problem on subgraphs. A rigorous
empirical benchmark on a diverse set of problem instances shows the
effectiveness of the approach in comparison to a well-known mutation
operator in terms of convergence speed and approximation quality. In
addition, we glance at the neighbourhood structure and similarity of
obtained Pareto-optimal solutions and derive promising directions for
future work.

1 Introduction

Solving the shortest path problem plays a major role in tackling many net-
work (flow) problems: When optimizing logistic networks, the routing of vehicles
should ideally follow the shortest path from a starting location to a goal loca-
tion. In computer networks, a shortest path may be the route with minimum
latency. Luckily, with approaches from Dijkstra [9] to Floyd [13] there exist effi-
cient approaches for finding optimal solutions - shortest paths from a starting
location to all other or even between all location.

Often, however, problems are not restricted to finding a shortest path regard-
ing a single objective. In logistic applications, costs for shortest paths may be
computed based on distances, delivery time or fuel consumption (e. g., when con-
sidering the topology of a landscape and not only distances). Clearly, these objec-
tives viewed separately may lead to different and contradicting solutions. Multi-
objective optimization allows to consider contradicting objectives together and
strives for a set of optimal compromises or Pareto-optimal solutions. These solu-
tions cannot improve regarding one objective without deteriorating for another
objective.

c© Springer Nature Switzerland AG 2019
R. Battiti et al. (Eds.): LION 12 2018, LNCS 11353, pp. 184–198, 2019.
https://doi.org/10.1007/978-3-030-05348-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05348-2_17&domain=pdf
https://doi.org/10.1007/978-3-030-05348-2_17

Solving Scalarized Subproblems within Evolutionary Algorithms 185

The multi-criteria shortest path problem (mcSPP) is generally defined on a
graph structure G = (V,E, c), where V is the set of vertices, E is the set of
edges, and c : E → R

m
>0 is a mapping of edges to an m-dimensional cost vector.

Objective values for a path p through graph G result in an m-dimensional cost
vector F (p) = (f1(p), . . . , fi(p), . . . , fm(p))T ∈ R

m
>0 with fi(p) =

∑
e∈p ci(e),

when so-called sum objectives are considered.
The mcSPP is NP-hard, as it exposes exponentially many Pareto-optimal

solutions and is thus intractable, in general [10]. Solution strategies for this prob-
lem class vary from enumerative methods [14,15,20] through FPTAS [21,22] up
to interactive methods [7] and randomized approaches like evolutionary algo-
rithms [5,17,19]. The very popular enumerative approaches determine possible
solutions by labelling or ranking. For two objectives, labelling methods work sim-
ilar to the approaches in the single-objective case: each node can hold mutually
non-dominating labels. After the labelling approach terminated, the labels at the
target node represent the efficient set of solutions. Contrary, for two-objective
problems, ranking approaches solve the single-objective k-shortest path prob-
lem by starting at the shortest path for one objective and extending k until all
efficient solutions are found. Although, from the practical point of view, many
mcSPP instances do not have an exponential number of solutions [18], enumer-
ative methods strongly depend on the amount of solutions on the Pareto-front.
In case of exponentially many solutions, these methods are not applicable any
more.

Over the last years several authors applied evolutionary algorithms as general
heuristic approaches for solving mcSPP. These randomized approximation meth-
ods follow the principle of Darwinian evolution by implementing a population-
based evolutionary optimization loop, which comprises variation as explorative
and selection as goal-directed promoting operator. However, for mcSPP, the
application of multi-objective evolutionary algorithms can currently be consid-
ered as case-studies in which existing, general algorithmic concepts have merely
been applied. Existing knowledge on the problem class has not been considered.
Additionally, the existing approaches were only evaluated on few or even single
instances.

In this work, we approach the mcSPP with multi-objective evolutionary algo-
rithms using a diverse set of test instances to get empirically broader insight into
approximation results. Following the principles in [3,4], we systematically review
and improve mutation operators as algorithmic components for including ben-
eficial problem knowledge in order to solve the shortest path problem under
multiple criteria.

From here, the paper continues with a description of notation, methods,
existing operators. Thereafter, we detail the proposed operators. As preparation
for evaluation and discussion of results, we detail the generation process for used
test instances. Finally, and after a careful discussion of results we conclude the
paper.

186 J. Bossek and C. Grimme

2 Problem Formulation

Let G = (V,E, c) be an undirected simple graph with node set V = {1, . . . , n},
edge set E = {{v, w} | v, w ∈ V } and vector-valued cost function c : E →
R

m
>0, which associates each edge e ∈ E with m ≥ 2 positive weights, e. g.,

distance and travel costs in case of G representing a street network. A sequence
pvi,vj

= (vi, vi+1, . . . , vj−1, vj) is called a vi − vj-path in G if {vk, vk+1} ∈ E
for k = i, . . . , j − 1. We define the i-th cost of a path p as the sum of i-th
components of all edges lying on the path, i. e., fi(p) :=

∑
e∈p ci(e), i = 1, . . . , m.

Wrapping up the path costs for all weights results in an m-dimensional cost
vector F (p) = (f1(p), . . . , fm(p))T ∈ R

m
>0. If P is the set of all feasible s − d-

paths between a start node s and a destination node d the formulation

F (p) = (f1(p), . . . , fm(p))T → min!
s. t. p ∈ P

defines the multi-criteria shortest path problem (mcSPP) with sum objectives1.
In contrast to the single-objective case, where always an optimal (maybe not
unique) solution exists, usually no single best solution can be found in the multi-
criteria case. Instead, there exists a set of so-called non-dominated solutions
S = {p ∈ P | !∃ p′ ∈ P with F (p′) � F (p)}. Here, the binary relation � is termed
the dominance relation and is defined as follows: p � p′, i. e., path p dominates
path p′, if fi(p) ≤ fi(p′), i = 1, . . . , m and ∃j ∈ {1, . . . , m}, fi(p) < fi(p′). In
words: path p dominates another path p′, if the cost vector of p is strictly better
in at least one objective and not worse in the remaining objectives than the
cost vector of p′. S is frequently termed Pareto-set and its image F (S) ⊂ R

m
>0

Pareto-front. The goal is to approximate the Pareto-set and -front respectively.
There exist classes of problems where |S| is exponential in the number n = |V |
of nodes.

3 Considered Mutation Operators

Mutation operators have not received much attention in evolutionary multi-
objective optimization for the mcSPP. A frequently adopted operator – termed
random walk operator (RW) in the following – works as follows: Given a feasible
s−d-path ps,d = (s = v0, v1, . . . , vl = d), select a random position i ∈ {0, . . . , l−
1} and replace the subpath pvi,d = (vi, . . . , vl = d) with a random vi − d-path
(see Fig. 1 for an example). Since this operator does not use any information
about the edge weights usually the probability to come up with a dominated
path is quite high.

1 Other objective types are possible, e. g., bottleneck objectives, but not considered
in this work.

Solving Scalarized Subproblems within Evolutionary Algorithms 187

s

v1

v2

v3

v4

v5

v6

v7

d

(2
,
2
)

(4, 1)
(5

,
3
)

(1, 1)

(1
, 1
)

(3
,
1
)

(6, 8)

(3, 1)

(6
,
8
)

(1, 9)

(6
, 6
)

(3, 1)
0

1(
,

)
2

1(
,

)
5

s

v1

v2

v3

v4

v5

v6

v7

d

(2
,
2
)

(4, 1)

(5
,
3
)

(1, 1)

(1
, 1
)

(3
,
1
)

(6, 8)

(3, 1)

(6
,
8
)

(1, 9)

(6
, 6
)

(3, 1)

0
1(

,
)

2
1(
,

)
5

s

v1

v2

v3

v4

v5

v6

v7

d

(2
,
2
)

(4, 1)

(5
,
3
)

(1, 1)

(1
, 1
)

(3
,
1
)

(6, 8)

(3, 1)

(6
,
8
)

(1, 9)

(6
, 6
)

(3, 1)

0
1(

,
)

2
1(
,

)
5

Fig. 1. Exemplary application of RW mutation. Left: initial path ps,d (bold edges).
Center: select random position vi = v2, neglect all nodes located before v2 in
ps,d (gray nodes) and costs completely. Right: append random subpath pv2,d =
(v2, v4, v3, v7, v5, d) to ps,v2 (bold edges).

We propose the following alternatives which differ from RW by the method
used to search for a new subpath. Here, we present the ideas for m = 2
objectives for sake of simplicity. However, adaptation to more than two objec-
tives is straight-forward. Starting point is again a feasible path ps,d = (s =
v0, v1, . . . , vl = d) and a randomly selected position i ∈ {0, . . . , l − 1}. Let ps,vi

be the subpath from s to vi. Instead of performing a random search, the first pro-
posed subgraph operator (SG) selects a random cost component o ∈ {1, . . . , m}
with equal probability, ignores the other cost components {1, . . . , m} \ {o} and
searches for the shortest path from vi to d with Dijkstra’s algorithm. All nodes
which are located prior to vi on the input path ps,d are marked as visited to
avoid loops. The resulting path pvi,d is a minimal vi − d-path regarding fo. It is
appended to ps,vi

resulting in another feasible s−d-path p̃s,d = ps,vi
◦pvi,d where

◦ is the path concatenation. See Fig. 2 for an illustration of the working princi-
ple by example. Our second proposal is the scalarized subgraph operator (SGS)
which is a generalization of SG. Instead of focusing on one of the objectives exclu-

s

v1

v2

v3

v4

v5

v6

v7

d

(2
,
2
)

(4, 1)

(5
,
3
)

(1, 1)

(1
, 1
)

(3
,
1
)

(6, 8)

(3, 1)

(6
,
8
)

(1, 9)

(6
, 6
)

(3, 1)

0
1(

,
)

2
1(
,

)
5

s

v1

v2

v3

v4

v5

v6

v7

d

(2
,
2
)

(4, 1)

(5
,
3
)

(1, 1)

(1
, 1
)

(3
,
1
)

(6, 8)

(3, 1)

(6
,
8
)

(1, 9)

(6
, 6
)

(3, 1)

0
1(

,
2
)

1(
,
5
)

s

v1

v2

v3

v4

v5

v6

v7

d

(2
,
2
)

(4, 1)

(5
,
3
)

(1, 1)

(1
, 1
)

(3
,
1
)

(6, 8)

(3, 1)

(6
,
8
)

(1, 9)

(6
, 6
)

(3, 1)

0
1(

,
)

2
1(
,

)
5

Fig. 2. Examplary application of subgraph mutation SG. Left: initial path ps,d (bold
edges). Center: selected position is vi = v2. We sample the first objective, i. e., o = 1,
ignore nodes on subpath ps,v2 (gray nodes) and edge costs function �= o. Right: find
shortest v2 − d-path pv2,d = (v2, v4, v7, d) with Dijkstra algorithm and append pv2,d to
ps,v2 (bold edges).

188 J. Bossek and C. Grimme

sively, SGS samples a random weight λ ∈ [0, 1], constructs the single-objective
weighted sum problem fλ = λf1 + (1 − λ)f2 and solves this scalarized surrogate
with a single-objective shortest path algorithm. As before, nodes already visited
in ps,vi

are marked visited. Again we end up with a vi − d-path pvi,d, which can
be appended to ps,vi

resulting in a mutated s − d-path. An example is depicted
in Fig. 3. Clearly, SG is a special case of SGS where λ = 0 or λ = 1 with equal
probability.

The SGS mutation operator applies a weighted sum approach to subgraphs
of G. Note, that weighted sum applied to G is only capable of finding so-called
supported efficient solutions (see, e. g., [11]). These solutions are located on the
convex hull of the Pareto-front. Solutions in concave regions cannot be detected
with this approach. However, we expect, that applying weighted sum scalariza-
tion on subgraphs (ignoring already visited nodes) is able to (1) push solutions
towards the Pareto-front rapidly and (2) identify solutions which are unreach-
able to the classic weighted sum approach. The first point is supported by the
fact, that given a path p the path p′ resulting from application of SG or SGS
either dominates p or boths paths are incomparable. This is evident, since the
appended subpath is a supported efficient solution of the shortest path problem
on the subgraph and thus is non-dominated by any other possible subpath. We
term this desirable behaviour Pareto-beneficial (see also [3]).

s

v1

v2

v3

v4

v5

v6

v7

d

(2
,
2
)

(4, 1)

(5
,
3
)

(1, 1)

(1
, 1
)

(3
,
1
)

(6, 8)

(3, 1)

(6
,
8
)

(1, 9)

(6
, 6
)

(3, 1)

0
1(

,
)

2
1(
,

)
5

s

v1

v2

v3

v4

v5

v6

v7

d

(2
,
2
)

(4, 1)

(5
,
3
)

(1, 1)

1

2

7

2

7

5

6

2

6
3

s

v1

v2

v3

v4

v5

v6

v7

d

(2
,
2
)

(4, 1)

(5
,
3
)

(1, 1)

(1
, 1
)

(3
,
1
)

(6, 8)

(3, 1)

(6
,
8
)

(1, 9)

(6
, 6
)

(3, 1)

0
1(

,
)

2
1(
,

)
5

Fig. 3. Examplary application of SGS mutation. Left: Initial path ps,d (bold edges).
Center: selected position is vi = v2. With the sampled weight (here λ = 0.5) we
compute fλ(e) = λf1(e) + (1 − λ)f2(e), ∀e ∈ E and ignore nodes located before vi on
the initial path (gray nodes). Right: find shortest v2 − d-path regarding fλ resulting in
pv2,d = (v2, v4, v3, v7, d) and append pv2,d to ps,v2 (bold edges).

4 Results

For an assessment of the proposed operators and their extensions, we conduct
a series of experiments based on diverse graph topologies containing different
amounts of nodes. Thus, we first detail the experimental setup and subsequently
discuss the observations and results regarding this aspect. Afterwards, we briefly
investigate solution properties based on the found solutions.

Solving Scalarized Subproblems within Evolutionary Algorithms 189

4.1 Graph Generation

In order to investigate the performance of the considered mutation operators we
generated 150 random graphs in total: each 5 instances of 6 different topologies
considering sizes n ∈ {50, 100, 250, 500, 1000}. The network topologies mimick
real-world network structures and differ in network density, interconnection of
nodes and (non)existence of clusters. The graph generation process is imple-
mented in the R package grapherator2 [2]. It follows a flexible three-step app-
roach:

1. Place nodes in the Euclidean plane [0, 100]2. Here we considered nodes placed
uniformly at random within the bounding box or clustered nodes.

2. Establish links between nodes following different edge generation methods
(complete graphs, edges based on Delauney triangulation or Waxmans prob-
ablistic model following [5]).

3. Associate each edge e ∈ E with two additive uniform random weights c1(e) ∈
[20, 3000], c2(e) ∈ [200, 5000]. This last step is identical among all generated
instances.

Figure 4 shows several generated networks by way of example.

#nodes: 50, #edges: 220, #clusters: 5
node generator(s): UNG, CLUNG
edge generator(s): CLSTEG, CLDEG, DEG

#nodes: 50, #edges: 274, #clusters: 0
node generator(s): UNG
edge generator(s): DEG

#nodes: 50, #edges: 306, #clusters: 5
node generator(s): LHSNG, CLUNG
edge generator(s): CLDEG, CLSTEG

#nodes: 50, #edges: 328, #clusters: 0
node generator(s): LHSNG
edge generator(s): DEG, STEG, WEG

#nodes: 50, #edges: 1088, #clusters: 0
node generator(s): UNG
edge generator(s): WEG

#nodes: 50, #edges: 2450, #clusters: 0
node generator(s): UNG
edge generator(s): CEG

Fig. 4. Examplary graph topologies generated for our study.

2 https://github.com/jakobbossek/grapherator.

https://github.com/jakobbossek/grapherator

190 J. Bossek and C. Grimme

4.2 Experimental Setup

We consider the three different mutation operators introduced in Sect. 2: ran-
dom walk mutation (RW), subgraph mutation (SG) and scalarized subgraph
mutation (SGS) as the generalization of SG. Two state-of-the-art evolution-
ary multi-objective algorithms are adopted as encapsulating meta-heuristics for
each mutation operator. NSGA-II (non-dominated sorting genetic algorithm) [8]
is a (μ + λ)-strategy. It basically relies on non-dominated sorting as primary
and crowding distance as secondary selection criterion. In contrast SMS-EMOA
(S-metric selection) [12] – in its classical version – follows a (μ + 1) indicator
based strategy. Here, the hypervolume [24] contribution of each individual is
used directly for selection. Since our aim is the empirical investigation of muta-
tion operators, recombination/crossover is not applied. However, we stress that
the integration of recombination might be fruitful as well. All other parameters
are wrapped up in Table 1. Each EMOA was executed 10 times for statistical
soundness of subsequent performance assessment. We used the implementations
from the R package ecr [1] as well as the packages’ methods for performance
assessment.

Table 1. Parameter settings for all configurations of the applied meta-heuristics
NSGA-II and SMS-EMOA.

Setting

Parameter NSGA-II/SMS-EMOA

Population size μ 100

of offspring λ 100/1

of evaluations 200 · |V |
independent runs 10

Mutation prob. pmut 1

In addition we used weighted sum scalarization (WSUM) [16] with 1000
equidistant weights λk = k

999 , k = 0, . . . , 999 and Dijkstra’s algorithm for the
single-objective shortest path problem to compute the supported efficient solu-
tions as a baseline. Note that the drawback of this appealing approach is that it
is not capable of finding non-supported Pareto-optima, i. e., solutions which are
not located on the convex hull of the Pareto-front.

4.3 Performance of Mutation Operators

We start our observation of experimental data with considering different aggre-
gated approximations of the Pareto-fronts in Fig. 5 for six graph instances with
different topology, and sizes n ∈ {500, 1000}, respectively. The non-dominated
solutions of all runs are aggregated for the application of the random walk (RW),
subgraph (SG), and scalarized subgraph (SGS) mutation operators. In Fig. 5,

Solving Scalarized Subproblems within Evolutionary Algorithms 191

we already qualitatively find that the SGS operator performs seemingly best
in almost all cases. In this plot we also find an implicit further ranking of the
other indicators: in many cases the SG operator is slightly superior to the ran-
dom walk operator. Still, sometimes random walk mutation also produces good
solution candidates in the final solution set.

N500−E1484−C0−W2 N500−E1499−C5−W2 N500−E1763−C0−W2

N1000−E2919−C5−W2 N1000−E2976−C5−W2 N1000−E2980−C0−W2

15
00

0
20

00
0

25
00

0
30

00
0

75
00

10
00

0
12

50
0

15
00

0
17

50
0

20
00

0
80

00
12

00
0

16
00

0
20

00
0

10
00

0
15

00
0

20
00

0
25

00
0

50
00

10
00

0
15

00
0

20
00

0
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

20000

30000

40000

50000

15000

20000

25000

30000

18000

20000

22000

24000

26000

15000

20000

25000

30000

10000

20000

30000

40000

50000

20000

30000

40000

50000

60000

f1

f 2

Algorithm RW SG SGS

Fig. 5. Union of Pareto-front approximations of each 10 runs of all algorithms on some
instances with n = 500 and n = 1000 nodes respectively. The instance names are
encoded as follows: N<#nodes>-E<#edges>-C<#clusters>-W<#weights> where 0
clusters indicates unclustered, i. e., random, instances.

In Fig. 6 and Table 3, we analyze the observations systematically. Here, we
restrict the analysis to NSGA-II results and the overall set of instances3. Note,
that results for SMS-EMOA are congruent for the following observations. For two
instances of each investigated number of vertices n ∈ {50, 100, 250, 500, 1000} the
distribution of hypervolume (HV) [24] values is given (top row of Fig. 6). This
indicator measures convergence and diversity of solution sets by determining the
enclosed volume of solutions and a reference point in objective space. Addition-
ally, and considering the same instances, statistics for the cardinality of the final
solution set (ONVG) [6] are given (bottom row of Fig. 6). For both indicators, the
dashed line denotes the indicator values found by systematically iterated single-
objective search using weighting of objectives (WSUM). This baseline is always
3 Note, that we do not consider the topologies of generated instances due to space

limitations. A detailed analysis of the topology’s influence cannot be thought without
considering the distribution of weights and the locations of start and destination
notes. Therefore, this aspect is left for rigorous analysis in future work.

192 J. Bossek and C. Grimme

outperformed by the SGS operator, while the remaining operators sometimes
stay below this baseline. Note, that the ONVG indicator is only meaningful, if it
is considered secondary to the HV indicator. As a strongly dominated solution
set can contain many (poor) solutions – often more, than a very good solu-
tion set – it is not sufficient as primary quality indicator. However, under the
pre-condition of HV comparison, it enables us to discriminate solution quality in
more detail. In order to get statistically sound quantitative results, we performed
pairwise comparisons between the algorithms with the nonparametric Wilcoxon
rank sum test on each test instance. We tested the hypothesis pair

H0 : med(HVA) ≤ med(HVB) vs. H1 : med(HVA) > med(HVB)

to check if the location shift between the hypervolume distributions HVA and
HVB of algorithms A and B is significant at significance level α = 0.05 adjusting
the p-value with Bonferroni correction to avoid multiple-testing issues. Table 2
shows the aggregated test results. It turns out, that in the most interesting case
(SGS vs. SG), the zero hypothesis is rejected in 109 of 150 cases (≈ 73% of
the cases). In particular with growing instance size the number of rejected tests
increases: H0 is not rejected for 34 of 90 instances of size n ∈ {50, 100, 250}, but
only for 7 out of 60 instances of size n ∈ {500, 1000}.

Thus, for the presented result, we can conclude that SGS does not only
dominate with respect to hypervolume. It is also able to find the largest number
of optimal solutions.

To complement the discussion of indicator values for the three different oper-
ators, we provide exemplary trajectories for two 500-nodes-instances on the HV
development aggregated over all runs in Fig. 7. We find that both new operators
SG and SGS converge very fast. After only few generations, the operators almost

N50−E164−C0−W2 N50−E167−C0−W2 N100−E282−C0−W2 N100−E350−C0−W2 N250−E692−C5−W2 N250−E865−C0−W2 N500−E1484−C0−W2 N500−E1763−C0−W2 N1000−E2980−C0−W2 N1000−E2991−C5−W2

H
V

O
N

VG

RW SG
SGS

RW SG
SGS

RW SG
SGS

RW SG
SGS

RW SG
SGS

RW SG
SGS

RW SG
SGS

RW SG
SGS

RW SG
SGS

RW SG
SGS

17

18

19

20

10

20

In
di

ca
to

r v
al

ue

Algorithm RW SG SGS

Fig. 6. Distributions of performance indicators HV (hypervolume on log-scale) and
ONVG for each 2 exemplary instances of instance size n ∈ {50, 100, 250, 500, 1000}
respectively.

Solving Scalarized Subproblems within Evolutionary Algorithms 193

Table 2. Results of pairwise one-sided Wilcoxon rank sum test for location shift.

H0 not declined H0 declined

SG versus RW 96 54

SGS versus RW 47 103

SGS versus SG 41 109

reach their final HV value and thus the best approximation set. This speed-up is
certainly related to the integration of local optimization on partial path. How-
ever, this speedup is also important in practise as the mutation operators SG
and SGS are computationally more complex than the RW operator.

A final comparison of algorithm performance under different mutation oper-
ators is presented in Fig. 8. The shown heat-maps summarize the results of pair-
wise ε-indicator [24] evaluation. This indicator measures the degree of domi-
nance between results of two algorithms A and B. It essentially states how far
the result set of B has to be shifted towards the utopian point such that it is
not dominated by A any more. Note, that this indicator is not symmetric. In
other word, the larger the indicator for algorithm B compared to A and the
smaller the indicator is for A compared to B, the better A performs compared
to B. The results shown in Fig. 8 confirm the superiority of SGS over all other
operators, the medium performance of SG, and the general low performance of
the RW operator. For comparison reasons the WSUM approach for determining
reference solutions is also included.

4.4 Properties of Solutions

To analyze the characteristics of solutions, we focus here on an exemplary
instance comprising 500 nodes. We first create a scatter plot of the edge weights
for this instance. Then we insert a frequency-based coloring of edges contained
in solutions. As solutions we use the non-dominated set of solutions generated
over all experimental runs for a given instance. Figure 9 shows the occurrence
of edges in the solution set.

We can observe, that all (possibly) optimal solutions can be constructed
from a subset of edges. This also means, that many edges are never part of
(possibly) optimal solutions. At the same time, edges used in optimal solutions
tend to gather in the lower left corner of the figure. Thus, edges with small
costs in at least one component of the cost vector are more frequently used in
(possibly) optimal solutions. The here exemplary presented observation is valid
for all instances.

194 J. Bossek and C. Grimme

Table 3. Statistics of performance indicators for some exemplary instances.

Problem Algorithm avg.HV sd.HV avg.ONVG sd.ONVG

N50-E164-C0-W21 RW 16.967 0.071 8.000 0.000

SG 16.935 0.021 7.300 1.059

SGS 17.001 0.000 10.000 0.000

N50-E167-C0-W24 RW 17.493 0.014 8.200 0.422

SG 17.462 0.052 8.400 0.699

SGS 17.486 0.004 9.100 0.316

N100-E282-C0-W24 RW 19.162 0.035 12.500 2.461

SG 19.148 0.016 8.500 0.527

SGS 19.226 0.000 20.800 1.135

N100-E350-C0-W25 RW 18.319 0.056 6.200 2.201

SG 18.345 0.005 7.300 0.675

SGS 18.387 0.000 13.000 0.000

N250-E692-C5-W21 RW 19.448 0.032 16.800 1.932

SG 19.437 0.033 10.600 1.075

SGS 19.461 0.003 16.600 1.713

N250-E865-C0-W25 RW 19.067 0.233 8.500 1.434

SG 19.354 0.031 12.200 2.044

SGS 19.422 0.002 16.900 0.316

N500-E1484-C0-W22 RW 19.724 0.361 9.000 3.399

SG 20.391 0.045 15.600 2.366

SGS 20.453 0.002 22.200 1.814

N500-E1763-C0-W25 RW 18.509 0.059 4.400 1.578

SG 18.690 0.030 14.300 2.163

SGS 18.763 0.001 16.300 1.059

N1000-E2980-C0-W23 RW 19.595 0.355 6.700 3.302

SG 20.244 0.006 15.100 1.729

SGS 20.313 0.001 18.900 0.568

N1000-E2991-C5-W23 RW 18.873 0.023 12.500 4.249

SG 18.889 0.007 11.900 1.101

SGS 18.914 0.001 20.300 0.483

Additionally, we use two visualizations based on the number of common
edges (NCE) and the largest common sub-path (LCS) between two solutions.
Per row/column, we visualize the comparison of a non-dominated solution with
any other non-dominated solution of the solution set. The solutions are ordered
according to objective value f1. Thus, distant solutions in a row (column) are also
distant in the non-dominated front; neighbouring solutions in a row (column)
are also neighbours in the non-dominated front. The left-hand plot in Fig. 10

Solving Scalarized Subproblems within Evolutionary Algorithms 195

N500−E1426−C5−W2 N500−E1762−C0−W2

10 1000 10 1000

3.15e+12

3.20e+12

3.25e+12

3.144e+12

3.148e+12

3.152e+12

3.156e+12

Generation [logscale]

av
g(

H
V

) +
/−

 s
d(

H
V

)
Algorithm ● ● ●RW SG SGS

Fig. 7. Hypervolume trajectories (average of all runs ± standard devition for each
EMOA for each generation) on two examplary graphs with 500 nodes.

EMOA.NSGA2.RW

EMOA.NSGA2.SG

EMOA.NSGA2.SGS

WSUM

EMOA.N
SGA2.R

W

EMOA.N
SGA2.S

G

EMOA.N
SGA2.S

GS

W
SUM

0 2000 4000 6000
Value

EMOA.NSGA2.RW

EMOA.NSGA2.SG

EMOA.NSGA2.SGS

WSUM

EMOA.N
SGA2.R

W

EMOA.N
SGA2.S

G

EMOA.N
SGA2.S

GS

W
SUM

0 1000 2000
Value

Fig. 8. Representative heat-maps of pairwise ε-indicator values for a problem with 500
nodes (left) and 1000 nodes (right).

shows the similarity of solutions regarding the NCE, while the right-hand plot
shows the length of the largest common sub-path of two solutions, respectively.

In both visualizations we find, that there are only local neighbourhood rela-
tions between neighbouring solutions. Combined with the largest common sub-
path behaviour (where the same effect can be observed) this means, that solu-
tions can locally be transformed to neighbouring solutions by changing one or few
edges. Interestingly, a little bit more distant solutions in objective space have
almost nothing in common. As such, paths are completely disjunct for these
solutions. That in turn suggests, that solutions cannot be constructed from each
other by simply combining “optimal” building blocks. In fact, constructing new
path (as it is done by the SGS operator, guided by a combined objective) can
contribute to finding alternative non-dominated routes.

196 J. Bossek and C. Grimme

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

1000

2000

3000

4000

5000

0 1000 2000 3000
c1(e)

c 2
(e
)

Frequency
●

●

●

●
●
●

0.0

0.1

0.2

0.3

0.4

0.5

Fig. 9. Analysis of edge occurrence frequency for overall non-dominated s − t-paths
in the solution sets of an examplary instance with n = 500 nodes. Scatter plot of
edge weights. Each edge is sized/coloured by the fraction of non-dominated paths it
is part of.

22 20 19 17 3 3 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 21 17 18 3 3 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 17 21 19 0 0 2 2 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 18 19 20 0 0 2 2 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 0 0 18 17 15 14 0 0 0 3 3 3 2 2 2 2 2 2 0 0 0

3 3 0 0 17 19 14 16 0 0 0 3 3 3 2 2 2 2 2 2 0 0 0

0 0 2 2 15 14 17 16 2 0 0 3 3 3 2 2 2 2 2 2 0 0 0

0 0 2 2 14 16 16 18 2 0 0 3 3 3 2 2 2 2 2 2 0 0 0

9 10 11 12 0 0 2 2 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 16 14 1 1 1 1 1 1 1 1 1 3 3 2

0 0 0 0 0 0 0 0 0 14 15 0 0 0 0 0 0 0 0 0 2 2 3

0 0 0 0 3 3 3 3 0 1 0 16 14 12 11 6 7 6 10 7 1 2 0

0 0 0 0 3 3 3 3 0 1 0 14 15 13 12 6 7 6 11 8 1 2 0

0 0 0 0 3 3 3 3 0 1 0 12 13 14 13 6 7 6 10 7 1 2 0

0 0 0 0 2 2 2 2 0 1 0 11 12 13 15 8 9 8 12 9 1 2 0

0 0 0 0 2 2 2 2 0 1 0 6 6 6 8 14 12 13 8 8 6 4 0

0 0 0 0 2 2 2 2 0 1 0 7 7 7 9 12 14 13 8 8 4 6 0

0 0 0 0 2 2 2 2 0 1 0 6 6 6 8 13 13 15 8 8 5 5 0

0 0 0 0 2 2 2 2 0 1 0 10 11 10 12 8 8 8 18 15 1 1 0

0 0 0 0 2 2 2 2 0 1 0 7 8 7 9 8 8 8 15 18 1 1 0

0 0 0 0 0 0 0 0 0 3 2 1 1 1 1 6 4 5 1 1 16 14 8

0 0 0 0 0 0 0 0 0 3 2 2 2 2 2 4 6 5 1 1 14 16 8

0 0 0 0 0 0 0 0 0 2 3 0 0 0 0 0 0 0 0 0 8 8 19

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23

S1 S2 S3 S4 S5 S6 S7 S8 S9
S10S11S12S13S14S15S16S17S18S19S20S21S22S23

0 5 10 15 20
Value

22 20 19 17 3 3 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 21 17 18 3 3 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0

19 17 21 19 0 0 2 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17 18 19 20 0 0 2 2 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 3 0 0 18 9 15 8 0 0 0 3 3 3 1 1 1 1 1 1 0 0 0

3 3 0 0 9 19 8 16 0 0 0 3 3 3 1 1 1 1 1 1 0 0 0

0 0 2 2 15 8 17 8 2 0 0 3 3 3 1 1 1 1 1 1 0 0 0

0 0 2 2 8 16 8 18 2 0 0 3 3 3 1 1 1 1 1 1 0 0 0

5 5 7 7 0 0 2 2 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 16 14 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 14 15 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 3 3 3 3 0 1 0 16 8 6 4 4 4 4 4 4 1 2 0

0 0 0 0 3 3 3 3 0 1 0 8 15 10 8 4 4 4 9 5 1 2 0

0 0 0 0 3 3 3 3 0 1 0 6 10 14 12 4 4 4 8 5 1 2 0

0 0 0 0 1 1 1 1 0 1 0 4 8 12 15 7 7 7 11 8 1 2 0

0 0 0 0 1 1 1 1 0 1 0 4 4 4 7 14 11 11 7 7 6 3 0

0 0 0 0 1 1 1 1 0 1 0 4 4 4 7 11 14 12 7 7 3 6 0

0 0 0 0 1 1 1 1 0 1 0 4 4 4 7 11 12 15 7 7 3 4 0

0 0 0 0 1 1 1 1 0 1 0 4 9 8 11 7 7 7 18 8 1 1 0

0 0 0 0 1 1 1 1 0 1 0 4 5 5 8 7 7 7 8 18 1 1 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 6 3 3 1 1 16 13 8

0 0 0 0 0 0 0 0 0 1 1 2 2 2 2 3 6 4 1 1 13 16 8

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 8 8 19

S1
S2
S3
S4
S5
S6
S7
S8
S9

S10
S11
S12
S13
S14
S15
S16
S17
S18
S19
S20
S21
S22
S23

S1 S2 S3 S4 S5 S6 S7 S8 S9
S10S11S12S13S14S15S16S17S18S19S20S21S22S23

0 5 10 15 20
Value

Fig. 10. Analysis of neighbourhood structure for overall non-dominated s − t-paths
in the solution sets of an examplary instance with n = 500 nodes. Left: heat-map of
pairwise NCE (number of common edges). Right: heat-map of pairwise size of largest
common sub-path values.

5 Conclusions

This work deals with mutation in evolutionary algorithms for the multi-criteria
shortest path problem. We present a mutation approach which follows the idea
of replacing a subpath of an existing solution with another locally efficient sub-

Solving Scalarized Subproblems within Evolutionary Algorithms 197

path. Hence, the operator mimicks the well-known weighted sum scalarization
approach in a smaller world and furthermore generates an offspring individ-
ual which is not dominated by its parent. A systematic comparison with sim-
ple random-path substitution and weighted sum scalarization reveals promising
results. The new mutation operator does not only produce good approximations
regarding dominated Hypervolume (statistically significant in most cases). It
furthermore finds solutions in concave regions of the Pareto-front (which the
global weighted sum approach is not capable of) and shows a rapid convergence
behaviour.

Future work directions are manifold. We aim to test the proposed opera-
tor on specifically generated instances with a large number of non-dominated
solutions. Furthermore, selection of the cutpoint in parent solutions is done uni-
formly at random at the moment. Here, we are confident, that smarter selection
strategies may be beneficial in terms of even faster convergence. Additionally,
multi-objective heuristics specifically designed for problem decomposition, such
as MOEA/D [23], can be evaluated in conjunction with the new operators. Last
but not least, theoretical analysis of the proposed mutation operator is desirable
in order to understand its functionality in a more4 rigorous way.

Acknowledgments. The authors acknowledge support from the European Research
Center for Information Systems (ERCIS).

References

1. Bossek, J.: ecr 2.0: a modular framework for evolutionary computation in R. In:
Proceedings of the Genetic and Evolutionary Computation Conference Companion,
GECCO 2017, pp. 1187–1193 (2017). https://doi.org/10.1145/3067695.3082470

2. Bossek, J.: grapherator: a modular multi-step graph generator. J. Open Source
Softw. 3(22), 528 (2018). https://doi.org/10.21105/joss.00528

3. Bossek, J., Grimme, C.: A pareto-beneficial sub-tree mutation for the multi-criteria
minimum spanning tree problem. In: 2017 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pp. 3280–3287. IEEE, Honolulu (2017). https://doi.org/
10.1109/SSCI.2017.8285183

4. Bossek, J., Grimme, C.: An extended mutation-based priority-rule integration con-
cept for multi-objective machine scheduling. In: 2017 IEEE Symposium Series
on Computational Intelligence (SSCI), pp. 3288–3295. IEEE, Honolulu (2017).
https://doi.org/10.1109/SSCI.2017.8285224

5. Chitra, C., Subbaraj, P.: Multiobjective optimization solution for shortest path
routing problem. Int. Sch. Sci. Res. Innov. 4(1) (2010)

6. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms
for Solving Multi-Objective Problems. Genetic and Evolutionary Computation,
2nd edn. Springer, New York (2007). https://doi.org/10.1007/978-0-387-36797-2

7. Coutinho-Rodrigues, J., Clmaco, J., Current, J.: An interactive bi-objective short-
est path approach: searching for unsupported nondominated solutions. Comput.
Oper. Res. 26(8), 789–798 (1999). https://doi.org/10.1016/S0305-0548(98)00094-
X

4 https://www.ercis.org/.

https://doi.org/10.1145/3067695.3082470
https://doi.org/10.21105/joss.00528
https://doi.org/10.1109/SSCI.2017.8285183
https://doi.org/10.1109/SSCI.2017.8285183
https://doi.org/10.1109/SSCI.2017.8285224
https://doi.org/10.1007/978-0-387-36797-2
https://doi.org/10.1016/S0305-0548(98)00094-X
https://doi.org/10.1016/S0305-0548(98)00094-X
https://www.ercis.org/

198 J. Bossek and C. Grimme

8. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 6(2), 182–197 (2002)

9. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

10. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiob-
jective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000). https://
doi.org/10.1007/s002910000046

11. Ehrgott, M., Gandibleux, X.: A survey and annotated bibliography of multiob-
jective combinatorial optimization. OR-Spektrum 22(4), 425–460 (2000). https://
doi.org/10.1007/s002910000046

12. Emmerich, Michael, Beume, Nicola, Naujoks, Boris: An EMO algorithm using the
hypervolume measure as selection criterion. In: Coello Coello, Carlos A., Hernández
Aguirre, Arturo, Zitzler, Eckart (eds.) EMO 2005. LNCS, vol. 3410, pp. 62–76.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4 5

13. Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962).
https://doi.org/10.1145/367766.368168

14. Gandibleux, X., Beugnies, F., Randriamasy, S.: Martins’ algorithm revisited for
multi-objective shortest path problems with a maxmin cost function. 4OR 4(1),
47–59 (2006). https://doi.org/10.1007/s10288-005-0074-x

15. Martins, E.Q.V.: On a multicriteria shortest path problem. Eur. J. Oper. Res.
16(2), 236–245 (1984)

16. Miettinen, K.: Nonlinear Multiobjective Optimization. International Series in
Operations Research & Management Science, vol. 12. Springer, New York (1998)

17. Mohamed, C., Bassem, J., Taicir, L.: A genetic algorithms to solve the bicrite-
ria shortest path problem. Electron. Notes Discret. Math. 36, 851–858 (2010).
https://doi.org/10.1016/j.endm.2010.05.108. ISCO 2010 - International Sympo-
sium on Combinatorial Optimization

18. Müller-Hannemann, M., Weihe, K.: Pareto Shortest Paths is Often Feasible in Prac-
tice, pp. 185–197. Springer, Berlin (2001). https://doi.org/10.1007/3-540-44688-
5 15

19. Pangilinan, J.M.A., Janssens, G.K.: Evolutionary algorithms for the multiobjec-
tive shortest path planning problem. In: International Journal of Computer and
Information Science and Engineering, pp. 54–59 (2007)

20. Sanders, P., Mandow, L.: Parallel label-setting multi-objective shortest path search.
In: 2013 IEEE 27th International Symposium on Parallel and Distributed Process-
ing, pp. 215–224 (2013). https://doi.org/10.1109/IPDPS.2013.89

21. Tsaggouris, G., Zaroliagis, C.: Multiobjective Optimization: Improved FPTAS
for Shortest Paths and Non-linear Objectives with Applications, pp. 389–398.
Springer, Berlin (2006). https://doi.org/10.1007/11940128 40

22. Warburton, A.: Approximation of pareto optima in multiple-objective, shortest-
path problems. Oper. Res. 35(1), 70–79 (1987). https://doi.org/10.1287/opre.35.
1.70

23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on
decomposition. IEEE Trans. Evolu. Comput. 11(6), 712–731 (2007)

24. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Per-
formance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evolu. Comput. 7(2), 117–132 (2003)

https://doi.org/10.1007/s002910000046
https://doi.org/10.1007/s002910000046
https://doi.org/10.1007/s002910000046
https://doi.org/10.1007/s002910000046
https://doi.org/10.1007/978-3-540-31880-4_5
https://doi.org/10.1145/367766.368168
https://doi.org/10.1007/s10288-005-0074-x
https://doi.org/10.1016/j.endm.2010.05.108
https://doi.org/10.1007/3-540-44688-5_15
https://doi.org/10.1007/3-540-44688-5_15
https://doi.org/10.1109/IPDPS.2013.89
https://doi.org/10.1007/11940128_40
https://doi.org/10.1287/opre.35.1.70
https://doi.org/10.1287/opre.35.1.70

	Solving Scalarized Subproblems within Evolutionary Algorithms for Multi-criteria Shortest Path Problems
	1 Introduction
	2 Problem Formulation
	3 Considered Mutation Operators
	4 Results
	4.1 Graph Generation
	4.2 Experimental Setup
	4.3 Performance of Mutation Operators
	4.4 Properties of Solutions

	5 Conclusions
	References

