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We build upon a recently proposed multi-objective view onto performance measurement of single-
objective stochastic solvers. The trade-off between the fraction of failed runs and the mean runtime of
successful runs - both to be minimized - is directly analyzed based on a study on algorithm selection
of inexact state-of-the-art solvers for the famous Traveling Salesperson Problem (TSP). Moreover, we
adopt the hypervolume indicator (HV) commonly used in multi-objective optimization for simultane-
ously assessing both conflicting objectives and investigate relations to commonly used performance
indicators, both theoretically and empirically. Next to Penalized Average Runtime (PAR) and Penalized
Quantile Runtime (PQR), the HV measure is used as a core concept within the construction of per-
instance algorithm selection models offering interesting insights into complementary behavior of
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1. Introduction

Predicting the best suited solver for an instance of an opti-
mization problem at hand out of a candidate solver portfolio is a
challenging task and commonly denoted as the algorithm selec-
tion problem [1,2]. Apart from automatically and ideally cheaply
computable features characterizing the problem instances, algo-
rithm selection models require a systematic and representative
benchmark study of the respective candidate solvers [3,4]. How-
ever, performance measurement of solvers is not totally straight-
forward and the benchmark results naturally depend on the
kind(s) of performance indicator(s) (PI) used.

In combinatorial optimization, the Penalized Average Runtime
(PAR, e.g., [5]) or the Penalized Quantile Runtime (PQR, [6,7])
are widely used, while continuous black-box optimization bench-
marks such as BBOB [8] per default are based on the Expected
Running Time (ERT, [9]). All these indicators build upon assessing
success of solver runs, although the definition of success usually
depends on the given task. In case of the Traveling Salesperson
Problem (TSP), where a set of n locations - usually denoted as
cities — and pairwise distances between the latter are given, the
objective is to find the shortest round-trip through all considered
cities. Thus, a TSP solver might be considered successful, if it
solved a given TSP instance up to optimality within a predefined
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time limit. In contrast, success in single-objective continuous op-
timization by default denotes approximating the optimum up to a
predefined precision limit. For solvers of stochastic nature, apart
from the focused fraction of (un)successful repeated solver runs
on an instance, the second central aspect considered usually is the
average quality of successful runs measured by running time, or
number of function evaluations, until the success criterion is met.
Thus, performance measurement of stochastic solvers inherently
examines solver robustness by simultaneously addressing both
solver success and runtime. However, the single-objective indi-
cators such as PAR or ERT offer a scalarized version which incor-
porates both perspectives but does not allow to directly analyze
the trade-off between average performance and robustness.

In this paper, we handle the fraction of unsuccessful runs
and the mean running time of successful runs separately and
take a multi-objective view onto them following our proposal
in [10]. As both objectives should be minimized simultaneously,
the algorithm selection is turned into a multi-objective decision
problem, allowing to assess the trade-off behavior of the consid-
ered solvers on different aggregation levels, e.g., (i) individually
per instance, or (ii) per instance set, or even (iii) aggregated
across the whole benchmark. Specifically, we will see that the
state-of-the-art solver EAX [11] on TSP, enhanced by a restart
strategy [12], shows high performance regarding both objec-
tives and thus often dominates competing solvers, in the Pareto
sense [13].

We will suggest the unary dominated hypervolume indicator
(HV, [14]) as a suitable measure reflecting solver performance
in the respective bi-objective space which directly operates on
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the objectives of interest related to the idea of automated multi-
objective configuration presented in [15]. And although we do
not claim that our proposed approach always results in superior
performances! compared to established indicators such as PAR10,
it provides a complementary alternative to measure and assess
algorithm performances. Moreover, the underlying objectives can
easily be replaced — making HV a flexible and generalizable
alternative to common performance indicators.

Further, commonly used indicators are not parameter-free -
see, e.g., the penalty factor used in the PAR score - however
they are often treated as such [7]. Although the HV indicator also
possesses a configurable parameter - its reference point - it can
be set in a straightforward manner to the maximum per objective,
compared to the rather arbitrary selection of the penalty factor.

Our contributions are as follows: Building upon our previous
work [10], we (1) specifically investigate theoretical dependen-
cies and relationships of the HV measure to common performance
indicators such as PAR10, (2) point our advantages and disadvan-
tages of common measures, and (3) use HV as the underlying
performance measure for constructing an algorithm selection
model on inexact TSP solvers building upon a recent study con-
ducted in [6] based on the PQR measure. It will be shown, that the
proposed HV measure is a linear transformation of the PAR score
offering an alternative perspective on algorithm performance.
Furthermore, the model presented here not only illustrates an
intuitive measure for the natural multi-objective view at solver
performances. In fact, the model also yields qualitatively compa-
rable results while simultaneously incorporating a lower number
of features. In addition, our multi-objective view provides more
insights into the strengths and weaknesses of the portfolio’s
solvers. The multi-objective HV concept should therefore com-
plement the commonly applied and accepted set of performance
indicators. Note that it - in contrast to the established perfor-
mance measures — easily generalizes to other kinds and numbers
of objective combinations apart from average running time and
fraction of unsuccessful runs.

Section 2 provides details regarding common performance
measures together with corresponding configuration challenges
and Section 3 profoundly introduces the multi-objective per-
spective on solver performance. Our case study on automated
algorithm selection on TSP is presented in Section 4. Conclusions
are drawn in Section 5 complemented by an outlook on future
research perspectives.

2. Performance measurement

In this section we briefly review concepts of measuring per-
formances. Prior to this, we introduce some mathematical vocab-
ulary: let A = {Ay, ..., A4} be a set of stochastic algorithms
and Z = {L,...,Iyzp)} a set of problem instances. Since the
considered algorithms are stochastic, each algorithm A € A is
executed m > 1 times on instance I € Z, which results in
empirical running times r’l“ e, rgj . Given a cutoff-time T we
consider the ith run successful if riA" < T and unsuccessful
otherwise. In order to establish a total order of algorithms .4 on
an instance set Z usually two aggregation steps are performed:
First an instance-wise aggregation produces a scalar performance
measure PM (A, I) for each pair (A, I) € A x Z. In the second step,
the instance-wise performances are aggregated by a summary
statistic, e.g., the arithmetic mean or the median, to produce a
single scalar performance value of A on the entire set Z (see Fig. 1

1 Aside from the considered performance measure, the quality of algorithm
selectors is affected by numerous other factors such as the selected features,
hyperparameter configuration, folds used for the model assessment, or even the
stochasticity of the algorithm itself.
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Fig. 1. Schema of two-step aggregation of running times of an algorithm A
on an instance set Z: (1) aggregate on per-instance basis, (2) aggregate the
aggregations.

for an illustration). In the following we focus on the instance-
wise aggregation and review classical performance measures. In
the remainder of this paper we use the arithmetic mean for the
second aggregation step.”

2.1. Classical performance measurement

In the algorithm selection scenario scalar performance mea-
sures are used. That is, m runs of an algorithm on an instance
are aggregated into a single quantitative value balancing goals
like the fraction of successful runs and the mean (or median)
running time. In the context of combinatorial optimization the so-
called Penalized Average Runtime (PAR, [5]) is the most frequently
adopted performance measure. It penalizes expired runs, i.e., runs
that did not find the (known) global optimum within a maximal
running time/cutoff-time T, with a score of f - T and afterwards
averages per pair of algorithm A and instance I. Here, f > 0 is
the penalty factor, which is commonly set to 10 (PAR10) or 2
(PAR2) [7]. For sake of completeness we state the mathematical
equation:

1 . s T, ifrM s T
PAR; (A, 1) = - ;r{“ with riA’I = {fA, !

r, otherwise.

For the PAR-score, the summary statistic of choice is the arith-
metic mean, which is tremendously sensitive to outliers. Imagine
a solver which manages to locate the global optimum in the
majority of runs very fast - e.g., within seconds - but fails once
— reaching the cutoff of, e.g., one hour. This single failed run
shifts the PAR-score to higher values which is even leveraged
further by choosing a high penalty factor. Replacing the mean by
the statistically robust p-quantile leads to the Penalized Quantile
Runtime (PQR)

PQvaf,T(A, I)
_ {f -T,
T A,l

Al
Qp(ﬁ s TR,

Here, an algorithm is assumed to be unsuccessful, or failed, if less
than p - 100%, p € [0, 1], of the m runs reached the optimum
within the cutoff-time T. Otherwise, the algorithm is considered
successful and the measure corresponds to the p-quantile (q,) of
the runtimes rl.A”,i = 1,...,m, which is typically set to p =

if S0 1{r™ < T} < [mp+ 1]
otherwise.

2 Note that this decision likewise may affect the algorithm selection process.
However, investigating the impact of this scalarization step is beyond the scope
of this work.
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0.5. In continuous optimization, another prominent performance
measure is the so-called Expected Running Time (ERT), as proposed
in [9]. As we do not consider the ERT within this study, we will
not provide any details, but instead refer the interested reader
to [4,9]. In the remainder of this paper we use the wide-spread
less formal short-term notations PAR10 and PQR10 whenever the
cutoff-time T is known from the context.

Obviously, common performance indicators are not
parameter-free (consider, e.g., the penalty factor of the PAR-
score). Finding a suitable configuration of these parameters is
not trivial, but usually this challenge is not even considered due
to widely used standard settings such as f = 10 in PAR10
or by choosing the arithmetic mean per default for aggregation
purposes instead of quantiles. In [7] we used TSP benchmark
data of inexact solvers taken from [6] to illustrate the effects and
interplay of varied parameter settings. While the penalty factor
only affects the influence of failed instances, it of course heavily
alters the leverage of those instances compared to the impact of
successful runs, especially in case aggregation over different runs
is conducted by the arithmetic mean which is heavily influenced
by outlier values. Thus, the choice of the penalty factor can
have a substantial impact on instance-based automated algorithm
selection models. In the PQR setting the level of the quantile used
for the aggregation of runtimes across solver runs determines
the degree of desired solver robustness. With increasing quantile
level the percentage of required successful runs also increases.
Naturally, very robust solvers such as the restart version of EAX,
denoted EAX+Restart, which is capable of solving almost all
instances of the considered instances set to optimality, are less
sensitive to the choice of the quantile.

The proposed multi-objective perspective on solver perfor-
mance (see Section 3) offers a promising and suitable alternative
to traditional indicators incorporating multi-objective optimiza-
tion concepts that allow to set corresponding parameters in a
straightforward and meaningful manner.

3. Multi-objective perspective

PARyr and PQR, f r implicitly address the two goals of max-
imizing probability of success p?*’ € [0, 1] and minimizing the
mean running time r2' of successful runs of a solver A on instance
1. Note that in the following we simply write p; and r; respectively
to omit notational overhead. However, due to the construction
of the measures along with high penalties for few failed runs
certain goals are preferred, resulting in an information loss. Re-
cently, [ 10] proposed to focus on the objectives separately — prior
to scalarization. More precisely, the authors focused on the bi-
objective view of simultaneously minimizing the probability of
failure pf = 1 — ps (maximizing ps, respectively) and minimizing
the running time of successful runs rs yielding the bi-objective
performance vector>

MOr(A, 1) = (rs, pr) € [0, T] x [0, 1]. (1)

Note, that p; (denoted as PF) may be estimated by the fraction
of failed runs and r; (denoted as ET) by the mean or median of
running times of successful runs. Scalarization is performed at
this stage summarizing solver behavior per instance by explicitly
focusing on dedicated aspects of the solver behavior - e.g., robust-
ness in case of p; — and hence less information loss compared to
directly calculating single-objective indicators, such as PAR, has
to be accepted.

3 1t should be noted that the proposed bi-objective perspective has a straight-
forward generalization to p > 2 performance measures PM;(A,I), 1 < i < p,
e.g., by additionally incorporating the variance of running times of successful
runs.
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Fig. 2. Illustration of Pareto dominance, non-domination levels and the HVr
measure.

Now what is a “good” solver w.r.t. MO7? Ideally, such a solver
will show low running times (low r; value) and high robustness
(low py value). For algorithms A, B € A, A (Pareto-)dominates B, if
A is better in at least one objective and not worse in the other.
However, the case of A being more robust but slower on average
and B behaving complementary, i.e., solving problems fast, but
locating the optimum less often than A, is not unlikely. Thus, in
terms of multi-objective optimization, A and B are incomparable.
Fig. 2 illustrates this perspective in the bi-objective space. Here, A
and B are incomparable, but A dominates, e.g., C. Clearly, we pre-
fer algorithms which are located on low non-domination levels;
level 1 algorithms being the most preferred ones (see the non-
filled circles in Fig. 2)." Moreover, we may adopt performance
indicators from multi-objective optimization to rank algorithms.
We propose to use the dominated hypervolume (HV, [13,14]) of
an algorithm,” which is defined as the space bounded by its
performance (rs, py) in objective space and a reference point R
that is implicitly given by (T, 1), i.e.,

HVr(A, 1) = (T —15) - (1 —py),

to rank the algorithms — illustrated as a shaded region for al-
gorithm C in Fig. 2. This seems to be the “natural” choice for a
scalarization of the bi-objective space. By this means algorithms
exceeding the cutoff-time T in all runs do not positively impact
performance, whereas all successful runs (with a runtime r; of
less than T) exert a positive impact on the overall performance.
Ishibuchi et al. [ 16] showed that the choice of the reference point
has a strong impact on the result of hypervolume calculation.
However, in our scenario the calculation is (a) based on a single
objective vector only and (2) is robust with respect to the refer-
ence point choice as preliminary experiments revealed. Note that
HV has the beneficial property that if an algorithm A dominates
another algorithm B on instance I, the HV values are ranked
accordingly, i.e., HV(A, I) > HV(B, I). HV values per algorithm can
be aggregated either per instance or instance set (see Section 2)
inducing a total order of algorithms which paves the way for
classical AS techniques.

We want to stress here that we do not claim the HV-measure
to be the holy grail of performance measurement. Rather, we aim

4 Level 1 algorithms are the non-dominated algorithms. Level k > 1
algorithms are non-dominated among all algorithms which are not on levels
lower than k.

5 Note that usually the hypervolume is calculated given a set of points, but
in our scenario a single point is the basis.
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to establish a bridge between classical performance measurement
and a multi-objective performance viewpoint. As we shall see in
Section 3.1 each performance measure is relevant, but certainly
has advantages and potential drawbacks. Moreover, for a subset
of performance measures functional relationships exist.

3.1. Relations to classical measures

Two of the aforementioned measures, i.e., PAR; r and HVr, are
functions of the (mean) running times of successful runs and the
failure or success rate, respectively. It is thus a valid assumption
that there is a functional relationship between those measures.
Let ny = Z}L 1(r; < T) be the number of successfully finished
runs where 1 denotes the indicator function which evaluates to 1
if the condition inside the braces is true and 0 otherwise. Given m
independent runs we can estimate the running time of successful
runs via - Z:":l 1{r; < T} - r;. Next, we derive some interesting

ng

relationships.

Theorem 1. Let T > 0 be a time-limit and f > 1 a penalty factor.
Then the following equation holds:

PAR; 1(A,I)=f-T —ps-(f —1)- T — HVy(A, I).

In order to prove Theorem 1 the following Lemma is helpful.

Lemma 2. Let T > 0 be a time-limit and f > 1 a penalty factor:

_l m
HV(A, 1) =ps - T — E;ﬂ{n <T}-r.
-

Proof. We apply basic algebraic transformations:

l m
HV7 (A, ) = (T — M sT) r,-) -(1-py)

i=1
=Ps

ng

m 1 «
=pT=po o D UR=T)
— i=1

1
Ps

1 m
=Ps'T—azll{ﬁ§T}'Ti O
i=

Now, we are ready to prove Theorem 1:

Proof of Theorem 1.

1 m
PARf 1 (A, 1) = — - ri <T}-ri+1{r;j>T}-f-T
y. (A1) m?:][“ o+ >T)-f-T]
1« "o >T
:7_5 1{ri§]‘}.ri+w.f.]"
m i=1 —n}_z

=py=(1-ps)

=l-ZH{rifT}-r,-+(1—ps)-f~T
m o3

1 m
=fT—ps-(f=1)-T—p - T+—> 1 <T}r;
m

i=1

=—HV7(A,I) (see Lemma 2)
=f-T—ps-(fF=1)-T—HVr(AI). O

Corollary 3. PAR, (A, 1) =T — HVy(A, I).

PAR; 1 PARq 1
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Fig. 3. Visualization of scalar performance measures as functions of the running
time of successful runs r; and the fraction of failed runs p; (brighter colors
indicate higher values). The total number of runs was set to m = 100 to obtain
a fine-grained resolution.

Corollary 4. Let A,Be Aand I € Z. Then
PAR; 1(A,I) < PARy 1(B,1) & HVr(A,I) > HVy(B,I).

Proof. Follows directly from Corollary 3:

PAR; (A, I) < PAR; 1(B, 1)
& T—HVr(A D) <T — HVy(B. 1)
& HVi(A,D)> HVs(B,]). O

Corollary 3 is of particular interest. In fact, the HV-measure
is a linear transformation of the classical PAR-score with no
penalization at all. The theoretical results are supported by the
visualizations depicted in Fig. 3. Here, we see different perfor-
mance measures covered in Sections 2 and 3 as functions of
pr € [0,1] and r; e [0, T] with cutoff-time T = 100. The
derived relationship between PAR; r and HVy becomes obvious
at first glance. In addition, the plots reveal different advantages
and disadvantages of the measures (see Table 1). Let us focus
on PAR-score and HV-score here. The former allows to adjust
the penalization of failed runs. However, an algorithm A with
many fast runs and few timeouts may be scored worse than
another algorithm B which is on average slower but never fails. In
contrast, the HV-score is applicable to more than two objectives
and puts equal weight on both objectives. However, in certain
situations the latter property may be undesired (see Table 1).
Note that calculating weighted Hypervolume [17] could be a
promising solution and generalization of the proposed approach.

4. Automated algorithm selection: A case study on TSP

Following the theoretical investigations of the different per-
formance measures, we will now compare their strengths and
weaknesses by means of an empirical case study based on the
TSP.
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Overview of advantages and disadvantages of the covered measures. The last
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column illustrates examples for which undesirable effects may occur.

Measure  Advantages Disadvantages Negative example

PARf.1 1 Simple and May lead to biased m — 1 very fast
established results regarding runs and 1 failed
measure. Penalty the gap to SBS, if run is scored
for impact of there are few worse than m
failed runs instances where slower runs.
adjustable. the SBS fails.

PQR, s 1 Less outlier Information loss m—[mq+ 1]
sensitive than (runtimes of failed runs,
PARy 1. Level of m—[mq+ 1] runs  remaining runs
sensitivity and not considered at very fast.
penalty for failed all).
runs adjustable.

HVr Intuitive measure Both objectives % failed runs and
in the equally weighted. % successful runs

multi-objective
space. No

with r; = ¢ close
to 0 has equal

score as no failed
runs and rg ~ I

parameters
necessary. Directly
applicable to > 2
objectives.

4.1. Experimental setup

In order to ensure comparability of our results with the cur-
rent state of the art in (inexact) TSP solving, we analyze our
proposed performance metrics based on the setup presented
in [6]. We thus trained competitive algorithm selectors by apply-
ing sophisticated machine learning techniques to a combination
of five heuristic state-of-the-art optimization algorithms, six rep-
resentative benchmark sets and three - within the literature well
established and widely accepted - sets of TSP features.

TSP solvers. Our portfolio of optimization algorithms is composed
of five inexact TSP solvers. EAX [11] is an evolutionary algorithm
using an edge assembly crossover operator for recombining edges
of parent solutions, along with sophisticated diversity preserva-
tion techniques. LKH [18] (version 2.0.7) is Helsgaun’s variant
of the Lin-Kernighan heuristic, a local search algorithm which
heuristically performs complex edge exchanges. We further con-
sider their corresponding restart variants, EAX/LKH+Restart [12],
which trigger a restart once the corresponding original algorithm
prematurely terminates. The multi-agent optimization algorithm
(MAOS, [19]) completes the portfolio. All solvers are given a
cutoff-time T of one hour (=3600 s) to find the optimal solution
and perform m = 10 independent runs for statistical soundness
of subsequent investigations.

TSP instances. As performances strongly depend on the consid-
ered problem instances, we aimed for a balanced test suite of
TSP benchmark problems and thus combined instances from real-
world and artificial problem sets. The former are taken from the
three well-known TSP sets VLSI, National and TSPLIB, whereas the
latter - random uniform Euclidean (RUE), clustered (Netgen) and
mixed (Morphed) problems - are created with problem genera-
tors (see [6] for details on the instance generation process). In the
end, our benchmark comprised a total of 1844 TSP instances — 21
TSPLIB, 18 VLSI and 5 National instances, as well as 600 instances
for each of the three artificial test beds. All instances contained
between 500 and 2000 cities each.

Feature sets. During the last decade, several research groups de-
veloped features for characterizing TSP problems with [20-22]
and [23] providing the most popular and promising concepts.
Here, we focus on the latter three feature sets as they can be
understood as extended versions of the characteristics from [20].

The 68 TSPmeta features [21] compute statistics based on the
distribution of the edge costs, the convex hull of the problem’s
cities, the distances among the nearest neighbors, as well char-
acteristics of a minimum spanning tree of the problem. The 50
UBC features [22] are based on minimum spanning trees again,
the problem’s distance matrix, statistics of multiple local search
runs, and information extracted from the branch-and-cut tree
produced by a two-second run of Concorde [24] — the best
known exact TSP solver. The third feature set, i.e., the 287 Pihera
features [23], builds upon the TSPmeta and UBC feature sets and
extends them by further convex hull, local search and nearest-
neighbor graph based features. Note that all feature sets are
partially redundant as they share multiple features.

Machine learning techniques for algorithm selection. For finding
competitive algorithm selectors, which predict the best optimizer
w. 1. t. our proposed performance measures, multiple classifi-
cation models have been trained using the R-package mlr [25].
We used kernel-based support vector machines (ksvm), recursive
partitioning and regression trees (rpart), gradient boosting (xg-
boost) and random forests. For reasons of simplicity, (almost) all
machine learning algorithms have been executed in their default
settings. The only exception to this is the SVM'’s inverse kernel
width parameter sigma, which has been configured a priori due
to its strong leverage on the SVM'’s performance.

In order to ensure reliable results, the performance of all
models was assessed with a 10-fold cross-validation. Given the
rather high noise and/or redundancy among the features, we
additionally considered feature selection strategies during the
training phase. More precisely, we tried a greedy sequential float-
ing forward-backward selection (sffs), as well as a stochastic (10
+ 5) genetic algorithm feature selection strategy with a maxi-
mum of 100 iterations. Further details on both approaches can
be found in [6].

Both feature selection strategies attempt to find feature sub-
sets that result in optimal performance among the considered
feature sets w.r.t. HV and PAR10, respectively. For the compu-
tation of the HV, we straightforwardly set the reference point to
(3600, 1.0) as this corresponds to the natural upper bounds of the
two underlying objectives (see Section 3): a maximal runtime of
one hour (= 3600 s) and a fraction of failed runs of at most 1
(100% respectively).

Regardless of their promising results in previous studies [4,6],
both selection strategies rely on imperfect principles — greedy
and stochastic, respectively. In consequence, they cannot guar-
antee to find the best possible feature combination. Still, using
either one of them usually strongly improves a selector’s per-
formance - in comparison to training it on either none or all
features.

4.2. Evaluation and discussion of the experimental results

In a first step, the performances of the five considered TSP
solvers (EAX, EAX+Restart, LKH, LKH+Restart and MAOS) are
visually compared from a multi-objective perspective by look-
ing at the mean running time of successful runs ry and failure
probability p; simultaneously (see Fig. 4). Noticeably, all solvers
without an additional restart mechanism (EAX, LKH and MAOS)
frequently failed to solve an instance, whereas EAX+Restart and
LKH+Restart almost always succeeded in finding an optimal tour
within the given time budget.

Following the setup described in Section 4.1, numerous al-
gorithm selectors have been trained and afterwards the best
classifier based on HV and PAR10, respectively, was chosen. The
selector trained on PAR10 (denoted AS-PAR10) is a support vector
machine using a total of 11 nearest-neighbor-graph features,
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Fig. 4. Heatmaps illustrating the performances of the heuristic TSP solvers (columns) per instance set (rows). Here, the continuous scale of successful running times
(x-axis) has been manually discretized into meaningful groups. Moreover, as a result of the ten runs that each TSP solver performs per instance, the probability of

failure (y-axis) automatically follows a discrete scale {0.0,0.1, ..., 1.0}.
which were originally proposed by [23] and have now been se-
lected by the greedy feature selection approach. While the second
selector(AS-HV) is also based on a support vector machine, it
relies on a completely different set of features: four features
from [22], describing the cost matrix and minimum spanning tree
of a TSP instance, which were chosen by the stochastic feature
selection strategy.

Then, the two selectors were compared with the five heuris-
tic TSP solvers, as well as with the PQR10-based selector pro-
posed in [6] (AS-EC]). As depicted in the scatterplots in the bi-
objective space in Fig. 5 and quantitatively supported by Table 2,
EAX+Restart clearly outperforms its four competitors and con-
sequently is the Single Best Solver (SBS), i.e., the solver that

performs best on average, from the portfolio — independent of
the considered performance measure or TSP instance set.® In fact,
for many TSP test suites it even resembles performances close to
or even better than the ones of the three selectors and thus de-
fines a challenging baseline for the latter. Moreover, EAX+Restart
even achieved the best performance among all algorithms - in-
cluding the selectors - and across all considered performance
measures when applied to the instances from the clustered TSP
sets (Netgen and Morphed).

6 We omitted results for the National data set due to its small size.
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Fig. 5. Scatterplots of running times of successful runs (in s) vs. failure rates of all runs aggregated component-wise for each instance set. The white inset-plots
show a zoom-in of the region close to (0, 0) to reveal minor details visually. The numbers next to the points display the corresponding HV values, which are based
on the reference point (3600, 1.0). According to this indicator (and with the exception of the TSPLIB instances), EAX-+Restart shows similar performance to all three

selectors while outperforming the remaining four considered TSP solvers.

A commonly used measure for assessing the quality of an
algorithm selector - independent of the particular task - is the so-
called gap closure, which gives the percentage of the gap between
the oracle-like Virtual Best Solver’ (VBS) and the aforementioned
SBS that is covered by the selector at hand [5,26]. While all three
considered selectors are able to reduce their respective gaps, the
magnitude of these ratios strongly varies depending on the con-
sidered objective: 15% (for AS-HV based on HV), 70% (AS-PAR10
based on PAR10) and 76% (AS-EC] based on PQR10). Although the
difference in gap-closure between HV and PAR10 looks rather
large (15% vs. 70%), Fig. 5 indicates very similar performances
between the two selectors. This finding also supports our thesis
according to which the penalty factor has a strong impact on
common performance measures such as PAR10 and PQR10 (see

7 The VBS uses oracle-like knowledge to predict the best solver per instance
and thus tries to avoid misclassifications.

previous section). Furthermore, the similar performances of AS-
HV and AS-PAR10 are also in line with our theoretical findings
(outlined in Section 3) as HV simply is a linear transformation of
the PAR1 score. Considering that PAR1 and all other PARy scores
are identical to the mean running time in case of exclusively
successful runs, HV also possesses a direct linear relation to PAR¢
(incl. PAR10) in that particular scenario.

In addition, the plots of Fig. 5 revealed two further noticeable
results. First, the mean failure rates of AS-HV and AS-PAR10 are
always less or equal to the mean failure rate of AS-EC]. At the
same time, the average running time of the successful runs was
usually slightly shorter for the latter selector. Hence, we can con-
clude that there also exists a trade-off between solution quality
and speed across the selectors. We further noticed that through-
out the set of all 1844 problem instances, AS-PAR10 and AS-HV
always achieved identical failure rates, but the average running
times (across the successful runs) of AS-PAR10 were shorter than
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Table 2

Summary statistics of multiple performance indicators grouped by TSP set and solver (or selector, respectively). The table lists the
hypervolume (HV), PAR10- and PQR10-scores, as well as the probability of failure p; and estimated mean running time of successful
runs rs. The best performances per TSP set and performance measure are highlighted.

TSP set Algorithm HV PAR10 PQR10 Py Ts
AS-ECJ 3577.44 33.10 16.75 0.0003 2142
AS-HV 3577.80 23.95 17.42 0.0001 22.03
AS-PAR10 3578.34 23.42 16.89 0.0001 21.50
All (1844) EAX 2821.22 7724.40 6938.57 0.2144 68.32
EAX+Restart 3576.48 42.85 36.32 0.0006 23.36
LKH 3353.13 1457.48 1306.05 0.0374 148.96
LKH+Restart 3461.50 568.98 566.16 0.0133 109.90
MAOS 2892.06 6959.52 5793.11 0.1930 80.99
AS-ECJ 3571.31 44.89 20.65 0.0005 26.99
AS-HV 3576.63 28.77 18.21 0.0002 22.87
AS-PAR10 3577.20 28.20 17.58 0.0002 2230
RUE (600) EAX 2620.05 9727.95 9430.92 0.2700 103.45
EAX+Restart 3572.10 33.30 21.21 0.0002 27.40
LKH 3404.78 1269.82 1135.67 0.0332 93.33
LKH+Restart 3540.88 167.12 159.79 0.0033 51.91
MAOS 2851.12 7347.68 6377.80 0.2037 100.61
AS-ECJ 3578.91 21.09 16.93 0.0000 21.09
AS-HV 3577.45 22.55 17.70 0.0000 22.55
AS-PAR10 3577.92 22.08 17.25 0.0000 22.08
Morphed (600) EAX 2830.93 7632.47 6846.10 0.2118 66.96
EAX+Restart 3579.14 20.86 16.72 0.0000 20.86
LKH 3304.98 1720.62 1444.99 0.0440 185.20
LKH+Restart 3417.27 733.53 654.08 0.0170 144.23
MAOS 2873.10 7158.30 5593.25 0.1985 76.57
AS-ECJ 3583.18 16.82 13.22 0.0000 16.82
AS-HV 3580.38 19.62 15.47 0.0000 19.62
AS-PAR10 3580.96 19.04 14.93 0.0000 19.04
Netgen (600) EAX 3002.66 5910.94 4627.24 0.1640 27.21
EAX+Restart 3583.40 16.60 12.99 0.0000 16.60
LKH 3356.76 1290.84 1190.55 0.0323 164.18
LKH+Restart 3427.58 777.22 862.97 0.0187 130.67
MAOS 2939.77 6492.23 5532.35 0.1800 64.88
AS-EC] 3546.78 361.79 13.68 0.0095 18.97
AS-HV 3576.08 23.92 20.87 0.0000 23.92
AS-PAR10 3576.35 23.65 20.60 0.0000 23.65
TSPLIB (21) EAX 2825.16 7717.70 8574.76 0.2143 347.13
EAX+Restart 3409.84 1733.01 1727.97 0.0476 190.16
LKH 3228.56 2994.30 3491.68 0.0810 285.83
LKH+Restart 3356.10 1786.75 1759.76 0.0476 243.90
MAOS 3042.37 5494.77 3438.39 0.1524 182.03
AS-ECJ 3572.90 207.10 5.36 0.0056 7.14
AS-HV 3547.32 52.68 42.38 0.0000 52.68
AS-PAR10 3547.56 52.44 42.14 0.0000 52.44
VLSI (18) EAX 3075.84 5204.16 4004.18 0.1444 5.11
EAX+Restart 3592.50 7.50 6.35 0.0000 7.50
LKH 3210.30 3089.70 4008.29 0.0833 151.40
LKH+Restart 3511.01 268.99 47.23 0.0056 7441
MAOS 3148.64 4411.36 4011.35 0.1222 13.21

the corresponding ones of AS-HV. However, the respective time
differences are more or less negligible and could instead simply
result from the imperfect feature selection procedures.

Despite the imperfect feature selection procedures, each of
the three discussed selectors is able to leverage the performance
of the SBS. This claim is also supported by a series of pairwise
Wilcoxon tests based on bootstrap samples of the selector and
solver performances as, e.g., previously proposed in [6]. That is,
we created 1000 bootstrap samples of the 1844 instances and
computed for each of the samples the aggregated performance
(based on the HV measure) for each of the three selectors (AS-
PAR10, AS-]JV and AS-ECJ), as well as the SBS (= EAX+Restart).
For each pair of the four considered algorithms (including the
selectors), we then conducted paired, one-sided Wilcoxon tests
based on a significance level of « = 5%. According to our test

results, EAX+-Restart is inferior to AS-ECJ, which in turn was out-
performed by AS-HV. Across all tests, AS-PAR10 showed superior
performance to its three contenders.

At last, we want to emphasize that our findings are completely
based on this particular TSP case study. Consequently, they could
look different when given a different task/scenario.

5. Conclusions

In this paper we propose a multi-objective view onto per-
formance measurement assessing the trade-off between failure
rate and average running time of successful runs for single-
objective stochastic solvers on optimization problem instances.
The algorithm selection problem is treated as a multi-objective
decision problem allowing for deriving interesting insights into
solver behavior, and the dominated hypervolume (HV) of solver
results in the bi-objective space functions as a scalar and - in our
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scenario - parameter-free indicator of overall performance mea-
surement. Theoretical insights are derived in terms of analytical
relationships to the PAR-indicator, specifically for PAR1.

A recent benchmark and automated algorithm selection study
for state-of-the-art inexact TSP solvers is used for illustrating
the potential of the introduced concept and for comparison to
common approaches such as PAR10 or PQR10. By this means
EAX+Restart is identified as almost exclusively (Pareto) domi-
nating other solvers showing high degree of robustness with re-
spect to few failed runs and low running times. Selection models
specifically constructed w.r.t. the HV measure show qualitatively
comparable results to classical PAR10 and dominating behavior
in terms of failure rate regarding PQR. Moreover, the HV measure
directly operates in the bi-objective space and the selector only
requires a small amount of TSP features. Therefore, the HV mea-
sure proves to suitably complement the existing state-of-the-art
performance indicators.

The proposed concept generalizes to higher dimensions, which
- in combination with other performance criteria - offers various
perspectives for future studies. Also, we will further investi-
gate our proposed approach based on other scenarios from the
ASlib [5] (http://www.coseal.net/aslib/), which has been out of
scope for the current work. Moreover, we will tackle the domain
of single-objective continuous black-box optimization as well
together with theoretical and systematic empirical comparisons
to ERT performance measurement.
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