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Abstract. A multiobjective perspective onto common performance
measures such as the PAR10 score or the expected runtime of single-
objective stochastic solvers is presented by directly investigating the
tradeoff between the fraction of failed runs and the average runtime.
Multi-objective indicators operating in the bi-objective space allow for
an overall performance comparison on a set of instances paving the way
for instance-based automated algorithm selection techniques.
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1 Introduction

Benchmarking and comparisons of (single-objective) optimization algorithms
strongly rely on adequate performance measurement of the respective solvers.
However, assessing solver performance in general is not straightforward at all as
usually multiple views and requirements have to be considered simultaneously
such as minimizing runtime, minimizing function evaluations, maximizing qual-
ity, etc.. For stochastic solvers specifically, minimizing variability across runs
or maximizing the number of successful runs might be of interest. Quite often
though, only a single indicator or a single-objective combination of indicators is
focussed in practice.

Common measures like PARI10 (e.g. [1], mostly in combinatorial optimiza-
tion) and Expected Running Time (ERT [4], mostly in continuous optimization)
for example try to combine several aspects into a single performance indicator
while the core concept is the distinction between successful and unsuccessful
runs as well as possible penalization of the latter. Usually, a run is denoted as
successful if it solves an instance to optimality within a given time limit, e. g.,
for the Traveling Salesperson Problem (TSP).

In our approach we propose to address the tradeoff between minimizing the
fraction of unsuccessful runs and the minimization of the average running time
directly by treating it as a multi-objective optimization problem for which spe-
cific multi-objective techniques and indicators can be used to measure over-
all algorithm performance across an instance/benchmark set. This provides the
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basis for automated instance-based algorithm selection techniques based on the
suggested performance measure generated by multi-objective techniques related
to the idea of automated multi-objective configuration presented in [2]. More-
over, the underlying concept generalizes to other kinds of performance indicator
combinations (also of higher degree) as well.

2 Performance Measurement

Common Approaches. In combinatorial optimization the so-called penalised aver-
age runtime (PAR10, e.g. [1]) score is a widely used hybrid performance mea-
sure. It is defined as the average of the runtimes with unsolved instances penal-
ized with 10 - T" where T is the cutoff time. It is thus a combined measure of
number of successful runs and average running time.

The Expected Running Time (ERT, [4]) basically measures the average num-
ber of function evaluations (across multiple runs of a solver on an instance) that
are needed to solve it. Usually applied in single-objective continuous black-box
optimization success here means that the resulting solution differs at most by
a predefined precision value from the global optimum. The ERT is a weighted
sum of the expected average running time of the succesful runs and the cutoff
time 7', while it is weighted by the fraction of failure and success probability.

Multi-Objective Perspective. Both widely used performance measures PAR10 and
ERT implicitly address the two goals of maximizing probability of success and
minimizing the expected running time of a solver. However, the actual tradeoff
between those objectives is concealed by solely focussing on the aggregated per-
formance measure. Moreover, often, high penalty values bias the performance
analysis while the extent of the used penalty is more or less arbitrary chosen.
We therefore propose an alternative bi-criteria performance measure PFMO . Let
T3 be the random variable that describes the running time of successful runs of
algorithm A and py = 1 — p, the probability of failure, then

PFMO .= (r, = B(TY), py).

Obviously, we aim to minimize both criteria, i. e., a “good” algorithm will
both minimize the number of unsuccessful runs and simultaneously minimize
the expected running time of successful runs. Note, that PFM© ¢ [0,T] x [0, 1]
and (0, 0) is the desirable ideal or utopia point. The measure may be depicted in a
2D scatterplot either for each instance and algorithm combination or aggregated
over all k instances of the respective instance set (see Fig. 2 for an example).

Multi- Objective Assessment. Within the resulting
two-dimensional space, we may adopt the concept
of Pareto-dominance [3] in order to compare solver
performances on and across instances. Assuming
point labels reflecting algorithms and both compo-
nents of PFMO as axis labels in Fig. 1 we see that
while algorithms A and B are non-dominated, i. e.,
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Fig. 1. Concept illustration.
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A shows better average runtime, but worse failure rate than algorithm B and
vice versa, e. g., A and B dominate C' and D. Thus, we prefer algorithms that
are located on low non-domination levels, ideally have a non-domination rank of
one. By this means algorithms of the same rank become incomparable.

Moreover, the dominated Hypervolume (HV, [3,6]) of a point (i. e., its HV
contribution) can be used to reflect a performance ranking of algorithms. It mea-
sures the size of the dominated space bounded by an anti-optimal reference point
(which is implicitly given by (7,1)). It is compliant with the Pareto dominance
relation in that a lower nondomination rank leads to a higher HV value. HV
contributions per algorithm can be aggregated over an instance set inducing a
total order of algorithms.

3 Exemplary Illustration

This section is based on a benchmark study including feature-based automated
algorithm selection of state-of-the-art inexact TSP solvers such as LKH, EAX
as well as their restart variants and MAOS performed in [5]. Performances were
measured in terms of PAR10 (using more robust median instead of mean for
aggregation) on different representative kinds of instance sets (rue, tsplib, vlsi,
netgen, morphed) and EAX+restart turned out to be the single best solver across
all instance sets followed by LKH+restart. Figure 2 adopts the presented multi-
objective view by showing the tradeoffs between both failure rate and average
running time of successful runs.

In the aggregated version, i. e. averaged across the respective instance set per
dimension, we see that EAX+restart clearly dominates the remaining solvers.
However, differences to LKH and LKH+restart clearly are due to differences in
runtime while both EAX and MAOS show substantially higher failure rates on
average.

Table 1 shows summary statistics of the individual non-domination ranks and
HYV values of all algorithm performance results, i.e. of all points in the upper left
subfigure of Fig. 2 allowing for an overall solver ranking across all instances by
using averages across the instance set. Interestingly, the HV based ranking (see
also bottom part of Fig. 2) is very much in line with the PAR10 based results
in [5] while the non-domination ranks favor LKH+restart. However, differences
in many cases are not statistically significant across the whole instance set but
on several subsets such as e.g. netgen.

4 Conclusions

The bi-objective performance measure PFM© as an alternative to PAR10 and
ERT is presented by directly investigating the tradeoff between failure rate and
average running time of successful runs. Thereby, the concept of Pareto domi-
nance and multiobjective performance assessment in terms of dominated Hyper-
volume and non-dominated sorting offers very promising perspectives and new
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Fig. 2. Scatterplots of raw (all instances, top) and aggregated (rs,ps) vectors

mean of median running times of successful runs => min!

per

instance set. Aggregation is performed componentwise, i. e., mean of failure rates and
mean of running times of successful runs. The numbers indicate the unnormalized
average dominated Hypervolume.

Table 1. Summary statistics of non-domination ranks and HV aggregated across all

instances.
Algorithm | Avg. rank | SDev. rank | Avg. HV | SDev. HV
eax 2.25 1.05 2599.71 | 1007.71
eax-restart | 2.28 1.03 3569.18 | 178.45
lkh 2.18 1.08 3382.47 |603.23
Ikh-restart | 2.03 0.97 3510.41 |360.99
maos 3.50 1.16 2749.20 | 1004.75

insights into algorithm behaviour. However, the core concept generalizes to other
kinds of indicator combinations as well.

First conceptual studies of PFM? on a TSP benchmark of inexact solvers
hint at interesting aspects of solver behaviour which will be further analysed in
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future studies together with thoroughly comparing properties of PAR10, ERT
and PFMO.
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