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ABSTRACT
Dynamic optimization problems have gained significant attention

in evolutionary computation as evolutionary algorithms (EAs) can

easily adapt to changing environments. We show that EAs can solve

the graph coloring problem for bipartite graphs more efficiently by

using dynamic optimization. In our approach the graph instance is

given incrementally such that the EA can reoptimize its coloring

when a new edge introduces a conflict. We show that, when edges

are inserted in a way that preserves graph connectivity, Random-

ized Local Search (RLS) efficiently finds a proper 2-coloring for all

bipartite graphs. This includes graphs for which RLS and other EAs

need exponential expected time in a static optimization scenario.

We investigate different ways of building up the graph by popular

graph traversals such as breadth-first-search and depth-first-search

and analyse the resulting runtime behavior. We further show that

offspring populations (e. g. a (1+λ) RLS) lead to an exponential

speedup in λ. Finally, an island model using 3 islands succeeds in an

optimal time of Θ(m) on everym-edge bipartite graph, outperform-

ing offspring populations. This is the first example where an island

model guarantees a speedup that is not bounded in the number of

islands.

CCS CONCEPTS
• Theory of computation → Theory of randomized search
heuristics.
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1 INTRODUCTION
Evolutionary computing techniques have been applied to a wide

range of problems that involve stochastic and/or dynamic environ-

ments [18]. These methods can easily adapt to new environments

which makes them well suited to deal with dynamic changes [4, 15].

Understanding the principle of reoptimization carried out by an

evolutionary algorithm for a dynamically changing problem is an

important task and we contribute to this area by studying dynamic

variants of the well-known graph coloring problem. Our main mes-

sage is that a static combinatorial optimization problem may be

solved more efficiently in a dynamic setup than in a static one.

Studies around dynamic optimization in the context of evolution-

ary algorithms have focused on the type, magnitude and frequency

of changes that occur in the problem that is changing dynami-

cally over time. Different types of experimental and theoretical

studies have been carried out. Those experimental studies usually

consider a benchmark that may be obtained from a classical static

problem by applying specific dynamic changes to the static prob-

lem formulation over time [19, 20]. A wide range of studies on

the runtime behavior of evolutionary computing techniques for

dynamic and stochastic problems have been carried out in recent

years. We refer the reader to [5] for an overview. These studies

build on a larger body of mathematical methods for the analysis

of evolutionary computing techniques developed over the last 20

years (see [1, 5, 10, 13] for comprehensive presentations). Theo-

retical investigations in terms of runtime analysis for dynamic

problems usually focus on the reoptimization time which measures

the amount of time that an algorithm needs to recompute an op-

timal solution when a dynamic change has happened to a static

problem for which an optimal solution has been obtained. Other

studies for NP-hard problems also consider the task of recomput-

ing a good approximation after a dynamic change has occurred.

Such studies include makespan scheduling [14], the minimum ver-

tex cover problem [16, 17, 21], a dynamic constraint changes in the

context of submodular optimization [20].

We investigate the classical graph coloring problem that has

already been studied in the context of evolutionary algorithms. For

the static problem, Fischer and Wegener [7] considered a problem

inspired by the Ising model from physics, where vertices of a graph

need to be colored with the same color. On bipartite graphs, this cor-

responds to the classical graph coloring problemwith 2 colors. They

showed that on cycles, the (1+1) EA has expected optimization time

Θ(n3) under a reasonable assumption, but a simple (2+1) Genetic

Algorithm with 2-point crossover and fitness sharing succeeds in
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expected time O(n2). Sudholt [22] considered the same problem on

complete binary trees. He showed that, while (µ+λ) EAs take expo-
nential expected time, the aforementioned (2+1) Genetic Algorithm

finds an optimum in expected time O(n3). Sutton [24] presented

bipartite graphs on which the (1+1) EA needs superpolynomial

time, with high probability. Sudholt and Zarges [23] considered

iterated local search algorithms in a different representation, where

algorithms operate with an arbitrary number of colors, but the fit-

ness function encourages the evolution of small color values. They

considered mutation operators that can recolor large parts of a

graph, based on so-called Kempe chains. Along with a local search

algorithm for graph coloring, iterated local search is shown to effi-

ciently 2-color all bipartite graphs and to color all planar graphs

with maximum degree at most 6 with at most 5 colors. Recently,

Bossek and Sudholt [3] also studied the performance of (1+1) EA

and RLS for the edge coloring problem, where edges instead of

vertices have to be colored such that no two incident edges share

the same color, and the number of colors is minimized.

Bossek et al. [2] considered a dynamic graph coloring problem

where an edge is inserted into a properly colored graph. The au-

thors analyze the expected time for the (1+1) EA, Randomized local

search (RLS) and two iterated local search algorithms from [23]

to rediscover a proper coloring in case the newly added edge in-

troduces a conflict. They consider 2-coloring bipartite graphs and

5-coloring planar graphs with maximum degree 6 as in [23]. The

authors show that dynamically adding an edge can lead to very

hard symmetry problems that, in the worst case, may be harder to

solve than coloring a graph from scratch. On binary trees, RLS can

easily get stuck in local optima and the (1+1) EA needs exponential

expected time.

1.1 Our Contribution
We consider the classical graph coloring problem and show that

dynamic optimization can be helpful for this problem if the input

graph is given to the algorithm incrementally based on an order de-

termined by graph traversals. Our investigations provide additional

insights to a wide range of studies of evolutionary algorithms and

other search heuristics that examine the computational complexity

of these methods on instances of the graph coloring problem in

static and dynamic environments.

We consider an important aspect that bridges these static and

dynamic studies to a certain extent. We are interested in whether

giving an evolutionary algorithm the input graph in an incremental

way and optimizing the resulting dynamic problem can lead to a

faster optimization process than giving the algorithm the whole

input at once as done in a standard static setting. Our focus is on

bipartite graphs, that is, the final graph resulting from the edge

sequence is bipartite, which corresponds to the classical graph color-

ing problemwith 2 colors. This problem is polynomial time solvable

in the context of problem specific algorithms. On the other hand, it

is NP-complete to decide if a given graph admits a k-coloring for
k ≥ 3 [8]. Furthermore, even if the input graphG is promised to be

3-colorable, it is NP-hard to color G with 4 colors [9].

We examine a dynamic variant of the graph coloring problem in

bipartite graphs where edges of a given static instance are made

available to the algorithm over time. We show that, if the edges

are provided in an order that preserves the connectivity of the

graph, even the simple RLS can find proper colorings for all bipar-

tite graphs efficiently. This is surprising since in the static setting,

RLS fails badly even on simple bipartite graphs such as trees [2]. We

further show that the order of edges is crucial: if edges are provided

in a worst-case or random order, RLS only has an exponentially

small probability of ever finding a proper 2-coloring on worst-case

graph instances. Specifically, we assume that the order in which

the edges are made available is determined by a graph traversal

algorithm. We study the reoptimization time after a given edge has

created a conflict and show that the use of graph traversals leads to

an efficient optimization process for a wide range of graph classes

where evolutionary algorithms for the static setting (where the

whole graph is given right at the beginning) fail. We pay special

attention to popular graph traversal algorithms such as depth first

search (DFS) and breadth-first-search (BFS) and show the differ-

ence that a choice between them may make with respect to the

optimization time when carrying out dynamic graph coloring for

bipartite graphs.

Finally, we investigate speed ups that can be gained when using

offspring populations and parallel dynamic reoptimization based

on island models. We show that offspring populations of logarith-

mic size can decrease the expected optimization time by a linear

factor. Island models that try to rediscover a proper coloring from

the same initial coloring after adding an edge can benefit from

independent evolution. It turns out that just using 3 islands leads

to an asymptotically optimal runtime. This is one of very few ex-

amples where island models are proven to be more efficient than

offspring populations and the first example where the speedup is

not bounded in the number of islands. Our results are summarized

in Table 1.

The paper is structured as follows. In Section 2, we introduce

the graph coloring problem and the incremental reoptimization ap-

proaches that are subject to our analysis. In Section 3, we show that

RLS is efficient with any graph traversal, while Section 4 shows that

not using graph traversals may be hugely inefficient. We carry out

more detailed investigations when using BFS and DFS in Section 5.

We show the benefit of using large enough offspring populations

in Section 6 and the benefit of parallel incremental reoptimization

based on island models in Section 7.

2 PRELIMINARIES
Let G = (V , E) denote an undirected graph with vertices V and

edges E. We denote by n := |V | the number of vertices and by

m := |E | the number of edges in G. We assume in the following

that all considered graphs are connected (as otherwise connected

components can be colored separately). By ℓ(G) we denote the

length of the longest simple path (number of edges) between any

two vertices in the graph. The diameter diam(G) is the maximum

number of edges on any shortest path between any two vertices.

A vertex coloring of G is an assignment c : V → {1, . . . ,n} of
color values to the vertices of G. Let deg(v) be the degree of a

vertex v and c(v) be its color in the current coloring. Every edge

{u,v} ∈ E where c(v) = c(u) is called a conflict. A color is called

free for a vertex v ∈ V if it is not assigned to any neighbor of v .
The chromatic number χ (G) is the minimum number of colors that
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Table 1: Worst-case expected times in the setting of adding edges incrementally to build up a whole bipartite graph for generic
RLS (see Section 2), tailored (1+λ) RLS (see Section 6) and island models (see Section 7). We denote the length of the longest
simple path by ℓ(G) and the diameter by diam(G).

Edge insertion order generic RLS Tailored (1 + λ) RLS µ Islands

Any connectivity-preserving O(ℓ(G)n2 +m) [Thm 3.1] O(λm + λ2−λℓ(G)n) [Thm 6.1] Θ(m) [Thm 7.1]

DFS traversal O(ℓ(G)n2 +m) [Thm 3.1] O(λm + λ2−λℓ(G)n) [Thm 6.1] Θ(m) [Thm 7.1]

BFS traversal O(diam(G)n2 +m) [Thm 5.1] O(λm + λ2−λdiam(G)n) [Thm 6.1] Θ(m) [Thm 7.1]

Random / worst-case insertion order ∞ (w.h.p.) [Thm 4.1]

allows for a conflict-free coloring. A coloring is called proper if
there is no conflicting edge.

We use the most common representation for graph coloring:

the total number of colors is fixed and the objective function is to

minimize the number of conflicts. Since we only consider 2-coloring

bipartite graphs, we can use the standard binary representation

that assigns each vertex a color from {0, 1}. We use the notion of

“flipping” vertices, by which we mean that the bit corresponding to

the vertex’ color is flipped.

The well-known randomized local search (RLS) is defined as

follows. Assume that the current solution is x . In every iteration a

single vertex color is flipped to produce y. Next, x is replaced by y if

the fitness of y is no worse than its parent fitness (see Algorithm 1).

We consider all algorithms as infinite processes as we are mainly

interested in the expected number of iterations until good solutions

are found or rediscovered.

Algorithm 1 RLS (x )

1: while optimum not found do
2: Generate y by choosing an index i ∈ {1, . . . ,n} uniformly

at random and flipping bit i .
3: If y has no more conflicts than x , let x := y.

Similar to [2], we also consider a tailored RLS algorithm that only

mutates vertices that are involved in conflicts (see Algorithm 2).

We sometimes refer to the original RLS as generic RLS as opposed
to tailored RLS.

Algorithm 2 Tailored RLS (x )

1: while optimum not found do
2: Generate y by choosing a vertex w uniformly at random

from all vertices that are part of a conflict. Flip the color

ofw .

3: If y has no more conflicts than x , let x := y.

We consider a setting of building up and re-optimizing a graph

incrementally, a setting termed as incremental reoptimization (IR)

in the following. To be more precise, given a graph G = (V , E)
with n nodes andm edges, we start with an empty n-vertex graph
G ′ = (V , E ′)with E ′ = ∅ and assign colors to the nodes uniformly at

random. Note, that G ′
initially has no edges and hence no conflicts

occur regardless of the colors assigned. Next, we subsequently

add single edges to E ′ according to a given order π of the edges

e1, . . . , em ∈ E, one by one, and re-optimize with algorithm A, e.g.,

generic RLS, between edge insertions (see Algorithm 3).

Algorithm 3 Incremental Reoptimization (IR) (G =

(V , {e1, . . . , em }), π , A)

1: Let G ′ = (V , E ′) be a graph with n = |V | isolated vertices

(E ′ = ∅).

2: Let x be a coloring of all vertices, chosen uniformly at random.

3: for i = 1 to |E | do
4: Add edge eπ (i) to E

′
.

5: Run A on G ′
with x as the initial search point. Stop when

a desired coloring has been obtained and store the final

search point in x .

Graph traversal. Let π be a sequence of edges e1, · · · , em with

endpoints in V . Let G = (V , E) be the graph with E = {e1, · · · , em }.

We will consider a special type of order π that maximally preserves

the connectivity. More precisely, for any i ≥ 1, we let G ′
i be the

edge-induced subgraph of G that is induced by the set of the first

i edges {e1, · · · , ei }. That is, the edge set of G
′
i is {e1, · · · , ei } and

the vertex set of G ′
i is the set of vertices that are endpoints of ej ,

1 ≤ j ≤ i . Note that V (G ′
i ) might be a strict subset of V . Now

the order π is called a graph traversal order of G if for any i ≥ 2,

the number of connected components (CCs) of G ′
i is at least the

number of CCs ofG ′
i−1. In other words, an edge insertion can never

link two CCs, which would reduce the number of CCs. Instead,

the graph traversal needs to fully build one connected component

before moving on to the next one. Once an edge {u,v} from some

CCC inG appears, then the next edges gradually build a connected

subgraph surrounding u until all the edges in C have appeared.

After that, a different CC will be built, and so on.

We call the order a Breadth-First-Search (BFS) traversal or order, if
the ordering can be obtained by first selecting some starting vertex

v from each connected component, and then following edges in the

same way that a breadth-first-search starting at v would explore

the connected component. A Depth-First-Search (DFS) traversal or
order can be defined similarly except that depth-first search is used.

Note that both BFS and DFS traversal are special cases of graph

traversal orders defined before.
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3 RLS IS EFFICIENT WITH ANY GRAPH
TRAVERSAL

Our main research question is whether incremental optimization

leads to efficient runtimes on subclasses of bipartite graphs if A is

set to RLS. Recall that the worst-case expected time for discovering

or re-discovering proper 2-colorings for bipartite graphs is infinite

as demonstrated for binary trees in [2]. The key idea to prove the

latter was to complete an n-vertex binary tree by adding a single

edge which leads to strong symmetry problems if the linked parts

are colored inversely.

It turns out that for IR in order to find proper 2-colorings of

bipartite graphs efficiently, the order π of edge insertions is crucial.

This aspect will be further investigated in Section 5. For now we

formulate the following general result:

Theorem 3.1. Let ℓ(G) be the length of the longest path in G. On
every bipartite graph G, the total expected time of IR with generic
RLS to incrementally build a proper 2-coloring is at most 2n2ℓ(G)+m
when edges are added in an order given by a graph traversal.

To prove Theorem 3.1, we make use of two folklore random walk

results. The presentation is adapted from [3, Lemma A.1].

Lemma 3.2. Consider a fair random walk Xt on {0, . . . ,k} where
0 is an absorbing state and k is a reflecting state. More formally,
abbreviatingpi , j := Pr (Xt+1 = j | Xt = i), for all 0 < i < k ,pi ,i+1 =
pi ,i−1 = 1/2, p0,0 = 1 and pk ,k−1 = 1. Let T0 be the first hitting time
of state 0 and T

0,k be the first hitting time of either state 0 or k . Then
the following statements hold:

(1) For all X0, E (T0 | X0) = X0(2k − X0 − 1).
(2) For all X0 and all r ∈ N, Pr

(
T0 ≥ 2rk2 | X0

)
≤ 2

−r .
(3) For all X0, E

(
T
0,k | X0

)
= X0(k − X0).

All statements also hold for a lazy random walk with a self-loop
probability of 1 − p, when multiplying all time bounds by 1/p.

Proof of Lemma 3.2. The first two statements were shown in [3,

Lemma A.1]. The third statement follows from the fair gambler’s

ruin scenario where one player starts with X0 dollars and the other

player starts with k − X0 dollars and the game ends when either

player is broke. It is well known that the expected time for the game

to end is X0(k − X0). □

Proof of Theorem 3.1. Note that in our setting we start with

an n-vertex graph with no edges at all, each vertex having color

0 or 1 with equal probability. Now we add edges incrementally in

an order of a graph traversal. Since the graph is bipartite, adding

a single edge e = {u,v} links two vertices of different sets. This

step may introduce at most one conflict if c(u) , c(v). Note that
this can happen only if one vertex, w. l. o. g. v , has degree one

after insertion of e , i.e., v has not yet been linked to the growing

connected component before. Otherwise, e closes a cycle C . This
cycle must be of even length since the graph is bipartite and the

path C \ {e} has alternating colors since the previous coloring was

proper. Thus u and v must have different colors already. In this

case, inserting e does not create a conflict.
Now, assume there is a conflict {u,v} and let v be the vertex

with degree 1. Mutating v will resolve the conflict. However, if u
has degree 2, mutating u moves the conflict to the other incident

u

w v

Figure 1: Snapshot of an IR iteration where a random walk
might take place. Here, edge {u,v} was added last in the
course of incremental optimization and lead to a single
conflict. Mutating v resolves the conflict while mutating u
moves the conflict to the other edge incident with u. The
conflict can then propagate further to the left where node
w serves as a reflecting node for the random walk.

edge at u (see Fig. 1 for an illustration). This yields a random walk

that can be mapped to the integers as follows. Let d(u,v) be the
graph distance, that is the smallest number of edges on any path

between u and v . If the conflict involves an edge {v1,v2} then the

current state is defined as

1 +min{d(v1,v),d(v2,v)}

with an additional absorbing state 0 that is attained when the con-

flict is resolved. The randomwalk always starts in state 1 as initially

{u,v} is the conflicting edge. The random walk is fair since flipping

the vertex that is closer to v decreases the state by 1, and flipping

the other vertex increases it by 1, if this mutation is accepted. It

is accepted if and only if the mutated vertex has degree at most 2

as otherwise the number of conflicts increases. Hence, the random

walk is reflected at the first vertex on the path from v that has de-

gree greater than 2; if there is no such vertex, there is another leaf

at which the conflict can be resolved. The maximum state that can

be reached is bounded by ℓ(G), i. e. the length of the longest path

inG (since the closest vertex to v must have graph distance at most

ℓ(G) − 1). This random walk requires at most 2ℓ(G) relevant steps
by Lemma 3.2. Each propagating step happens with probability at

least 1/n and thus has waiting time O(n).
Finally, recall that every time an edge insertion closes a cycle

no conflict is introduced at all as argued at the beginning of the

proof. In these cases A terminates after a single fitness function

evaluation. As a consequence, only the cases where an isolated

node is linked for the first time may introduce a conflict. There are

n − 1 such steps. Hence the total runtime is

2(n − 1)nℓ(G) + (m − n + 1) ≤ 2n2ℓ(G) +m. □

The upper bound from Theorem 3.1 is tight on path graphs.

Theorem 3.3. On any path with n nodes, the total expected time
of IR with generic RLS to incrementally build a proper 2-coloring is
Ω(n3) when edges are added in an order given by a graph traversal.

Proof. Consider an n-vertex path which is built incrementally

starting from either one of its leaf nodes. After adding the i-th
edge e = {u,v}, 1 ≤ i ≤ n − 1, with probability 1/2 no conflict is

introduced if by chance c(u) , c(v). With the converse probability,

if u and v have the same colors, a random walk with states 0, . . . , i
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is started, where both states 0 and i are goal states and the random

walk starts in state 1. This random walk runs for at least i − 1

relevant steps in expectation by Lemma 3.2 and a relevant step

happens with probability at most 2/n. In total we add n − 1 edges

incrementally and all n−1 events of a random walk taking place are

independent. There are (n− 1)/2 such random walks in expectation.

Note that, by Chernoff bound, the probability of having less than

(n−1)/3 randomwalks is 1−e−Ω(n). Let j1, . . . , j(n−1)/3 be the steps
a random walk takes place and note that ji ≥ i . Then the expected

time to incrementally reoptimize a path is bounded from below by

(n−1)/3∑
i=1

n(i − 1)

2

=
n

2

(n−1)/3∑
i=1

(i − 1) = Ω(n3).

Here, the first term results from the fact that the length of the ran-

dom walks is monotonically increasing. Note that Ω(n3) = Ω(mn2)
for paths sincem = Θ(n). □

Figure 2: Example of a depth-k star with n = 19 nodes and
depth k = 3.

Paths are examples where the upper bound from Theorem 3.1

is tight for a maximum value of ℓ(G), namely ℓ(G) = n. We also

show that there is a family of graphs for all (even) values of ℓ(G)
for which the upper bound from Theorem 3.1 is tight. Consider a

generalization of the star-graph termed the depth-k star where we
have one center node and (n − 1)/k paths originating in the center

node (see Fig. 2 for an example), for some value 1 ≤ k ≤ (n − 1)/3.

(For simplicity we assume that (n − 1)/k is integer). Note that only

the center node can have a degree greater 2 and may serve as a

reflecting node in the course of incremental optimization. Hence,

the behavior of RLS is similar to its behavior on a path. In the

following we show that the runtime bound from Theorem 3.1 is

tight on depth-k stars for any reasonable choice of k .

Theorem 3.4. On any depth-k star with with n nodes (n odd) and
1 ≤ k ≤ (n − 1)/3, the expected time of generic RLS to build a proper
2-coloring is Ω(kn2) when edges are added in an order given by a
graph traversal.

Proof. Note that ℓ(G) = 2k (as each path from one leaf to

another is a longest path) for any depth-k star. Note further that

the center node reflects random walks once it reaches a vertex

of degree 3 in the course of incremental optimization. This must

happen after adding 2k + 1 edges since edges are added according

to a graph traversal and the center node is the only link between

paths. At the time a third edge at the center is added, there can only

be two paths that have been built, or partially build. We consider

the expected remaining time for adding the remaining (n − 1)/k − 2

paths. Note that for all these paths, the addition of edges must start

from the center vertex and now the center node acts as a reflecting

node for these random walks.

After adding the i-th edge e = {u,v} of a path, with probability

1/2 a random walk with states 0, . . . , i starts. By Lemma 3.2 this

random walk runs for at least 2(i − 1) steps in expectation and

relevant steps take place with probability at most 2/n. For a fixed
path in total k edges are added until a leaf node is connected to the

growing connected component. LetTj be the number of generations

spent fixing a conflict on the j-th path, then

E

(
Tj
)
≥

k∑
i=1

1

2

· 2(i − 1) = Ω(nk2).

By construction of the depth-k star there are (n − 1)/k paths and

two of these were covered in the first phase. Adding up all times

spent on the remaining paths, the expected number of steps until

the depth-k star is properly colored with two colors is

(n−1)/k−2∑
j=1

E

(
Tj
)
=

(
(n − 1)

k
− 2

)
Ω(nk2) = Ω(kn2). □

Recall that ℓ(G) = 2k = Θ(k). As a consequence, the runtime of

IR with generic RLS with any graph traversal on any depth-k star

is tight for any valid choice of the graph parameter k .
We finish this section by noting that, similarly to [2], the expected

runtime can be reduced by using tailored RLS which reduces the

waiting time for re-coloring the right vertex from O(n) to Θ(1).

Corollary 3.5. On any bipartite graph, the total expected time of
tailored RLS to incrementally build a proper 2-coloring isO(ℓ(G)n+m)

when edges are added in an order given by a graph traversal.

4 GRAPH TRAVERSALS ARE IMPORTANT
The following result emphasizes that the order of edge insertions

is of utmost importance; an unfavorable order may lead to infinite

runtimes for RLS with overwhelming probability. Furthermore,

even if the order is uniformly random, it may still lead to infinite

runtimes for RLS. Given a graphG = (V , E), and an edge sequence π
over E, we say π is a random order of E or the graph if π is chosen

uniformly at random from the set of all possible permutations

over E.

Theorem 4.1. For every n = 1 mod 3 there exists a tree Tn and a
worst-case edge insertion strategy such that RLS has infinite runtime
with probability 1 − 2

−Ω(n). Furthermore, for the random order of Tn ,
RLS has infinite runtime with probability 1 − 2

−Ω(n).

Proof. We consider a tree Tn where the root r has (n − 1)/3

children and each child of the root has two children. This means

that on level 1 ofTn , we have (n−1)/3 binary trees of height 1. Now

consider the following worst-case edge insertion strategy: first add

edges such that all (n − 1)/3 binary trees are formed (phase 1) and

afterwards connect the root to its children (phase 2). Note that once

two binary trees are colored inversely, RLS gets stuck forever since

there is no possibility to color r without conflicts after connecting
both binary trees to the root. This is because the root’s children –

once connected to the root – have degree greater 2 and thus act

as reflecting states for the random walk of the introduced conflict.

Since in the first phase of the edge insertion all binary trees are
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Figure 3: Example of possible first n − 1 edge insertions fol-
lowing a DFS traversal (left) and BFS traversal (right) on a
complete bipartite graph. Nodes are numbered with the iter-
ation they are linked to the growing connected component.
For visual clarity all other edges are not shown.

unconnected and hence colored independently, the probability that

they are all colored the same is 2 · 2−(n−1)/3 = 2
−Ω(n)

. Hence, the

unfavorable situation occurs with probability 1 − 2
−Ω(n)

.

Finally, if the edges are inserted in random order, i.e., the edge

sequence is chosen uniformly at random from the set of all edge

permutations over E, then for each height-1 binary tree with the

vertex v being the child of root r , the probability that both edges in

the tree appear first before edge (v, r ) is 1

3
. We call a height-1 binary

tree bad if both of its edges appear before the edge connecting r
to its child in the tree. Therefore, the expected number of bad

binary trees is
1

3
· n−1

3
= n−1

9
. Further note that all the bad binary

trees occur independently due to the random order assumption. By

Chernoff bound, with probability at least 1 − 2
−Ω(n)

, the number

of bad binary trees is at least T ≥ 1

2
· n−1

9
. Finally, for all these

bad binary trees, since they are unconnected to the rest of the

tree when they are formed, and hence colored independently, the

probability that they are all the same is 2
−Ω(T ) = 2

−Ω(n)
. Hence, the

unfavorable situation occurs with probability 1− 2
−Ω(n) − 2

−Ω(n) =

1 − 2
−Ω(n)

. □

5 ON THE CHOICE OF GRAPH TRAVERSAL
Theorem 3.1 states that (generic) RLS is efficient with any con-

nectivity-preserving graph traversal. In the following we study

the effect of using DFS- versus BFS-traversals and point out major

differences on special cases of bipartite graphs. To motivate this,

consider a complete bipartite graphG = (V1 ∪V2, E) with n1 = |V1 |,
n2 = |V2 | and n1 = n2 = n/2. Note that given an arbitrary starting

node v ∈ V1 there is a DFS-traversal that adds edges in an order

such that after adding the first n − 1 edges, the partial graph is

an n-vertex path. Such a DFS-traversal can be easily constructed

by following an edge to a node that was not yet connected to the

growing connected component. This path has length Θ(n) and is a

longest path in G, i.e., ℓ(G) = Θ(n). Now consider a BFS-traversal

and assume w. l. o. g. that we start in an arbitrary nodev ∈ V1. Now,
according to the working principles of BFS, BFS adds all n/2 edges
to the neighbors of v1, first producing random walks of length at

most 2 in the optimization steps of IR. Subsequently, for each vertex

inV2, all n1−1 edges to the remaining nodes inV1 are added. Again,
each IR step deals with random walks of length at most 3. Hence,

the length of the paths introduced by BFS is Θ(1) vs. Θ(n) for DFS
(see Fig. 3 for an illustration).

Since BFS visits the nodes in level order, level by level, we can sub-

stitute ℓ(G) with the diameter of the graph G , denoted by diam(G),
in the expected runtime bound. This observation is made mathe-

matically rigorous in the following theorem.

Theorem 5.1. On any bipartite graph, the total expected time
of IR with generic RLS to incrementally build a proper 2-coloring is
O(diam(G)n2 +m) when edges are added in order of a breadth-first-
search traversal.

Proof. We focus on the maximum length of random walks that

may occur during the optimization. First of all note that BFS tra-

verses a graph in level order visiting all adjacent nodes first, nodes

with distance two second and so on. Put differently, BFS solves the

unweighted Single-Source-Shortest-Path (USSSP) problem. That

is, given a starting node u ∈ V , the length of each path in a BFS-

traversal until a previously seen node is visited again is bounded by

the length of the longest shortest path s(G,u) to any other vertex

v ∈ V \ {u} – in terms of the number of edges on the path. Since

s(G,u) depends on the starting node, the length of the longest possi-

ble path produced by incrementally adding edges by any BFS traver-

sal is upper bounded by the diameter diam(G) = maxu ∈V s(G,u),
i. e., the length of the longest shortest path in G. Adopting the

waiting-time arguments of Theorem 3.1 we obtain a runtime bound

of O(diam(G)n2 +m) for any BFS-traversal. □

This bound is tight on paths and depth-k stars as for both graph

classes diam(G) = ℓ(G).
Even though the asymptotic runtime bounds are the same, e.g. on

paths, it makes a huge difference for other sub-classes of bipartite

graphs. As pointed out in the beginning of this section, on complete

bipartite graphs ℓ(G) = Θ(n) whereas diam(G) = Θ(1), yielding a

performance advantage of a factor of n for BFS traversals. Similarly,

on toroids, ℓ(G) = Θ(n) and diam(G) = Θ(
√
n). As diam(G) ≤ ℓ(G)

on any graph there is no advantage of using DFS and the usage

of BFS shows similar or superior performance. Table 2 gives an

overview of the expected runtimes of RLS with DFS and BFS on

sub-classes of bipartite graphs as well as further results obtained in

the following sections.

For sake of completeness we close this section with a corollary

on the runtime of IR with tailored RLS and BFS.

Corollary 5.2. On any complete bipartite graph, the total ex-
pected time of IR with tailored RLS to incrementally build a proper
2-coloring is O(diam(G)n +m) when edges are added in order of a
breadth-first-search traversal.

6 OFFSPRING POPULATIONS
We now consider the use of offspring populations in RLS. The

(1+λ) RLS creates λ offspring through independent mutations from

the current search point, and then picks a best offspring that is

compared against the parent as in RLS. Ties between offspring

are broken uniformly at random. For simplicity, we only consider

tailored RLS in the following, but it easy to derive bounds on generic

RLS with offspring populations. The following theorem quantifies

the improved time bounds when using BFS and DFS.

Theorem 6.1. For a given connected graph G, let L(G) denote an
upper bound on the length of any random walk; more specifically, L :=

diam(G) when using BFS and L := ℓ(G) for any other graph traversal.
Then the expected time of tailored (1+λ) RLS is O(λm + λ2−λLn).

For λ∗ := max{⌈log(Ln/m)⌉, 1} this is O(λ∗m).
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Table 2: Obtained runtime results for sub-classes of bipartite graphs. For k-ary trees we assume that 2 ≤ k = O(1). The toroid
is assumed to have lengths

√
n ×

√
n. For (1+λ) RLS we use the choice of λ = λ∗ := max{⌈log(diam(G)n/m⌉, 1}. The island model

uses the optimal number of 3 islands. We use Θ where we have an explicit lower bound or the trivial one of Ω(m). Note that
the island model has optimal performance Θ(m) on all bipartite graph classes.

Graph class ℓ(G) diam(G) RLS with DFS RLS with BFS Tailored
RLS with BFS

Tailored
(1 + λ) RLS with BFS

Island
Model

Complete k-ary tree Θ(logn) Θ(logn) O(n2 logn) O(n2 logn) O(n logn) O(n log logn) Θ(n)

Toroid Θ(n) Θ(
√
n) O(n3) O(n5/2) O(n3/2) O(n logn) Θ(n)

(logn)-dim. hypercube Θ(n) Θ(logn) O(n3) O(n2 logn) Θ(n logn) Θ(n logn) Θ(n logn)

Path Θ(n) Θ(n) Θ(n3) Θ(n3) Θ(n2) Θ(n logn) Θ(n)

Star graph Θ(1) Θ(1) Θ(n2) Θ(n2) Θ(n) Θ(n) Θ(n)

Complete bipartite Θ(n) Θ(1) O(n3) Θ(n2) Θ(n2) Θ(n2) Θ(n2)

Depth-k star Θ(k) Θ(k) Θ(kn2) Θ(kn2) Θ(kn) O(n logk) Θ(n)

Proof. Consider the situation after adding one edge, which leads

to a conflict. The conflict is resolved in one generation if there is

an offspring that flips the leaf node. This happens with probability

1− 2
−λ

. With the converse probability 2
−λ

, all offspring flipped the

leaf’s neighbor and the conflict moved away from the added edge.

We argue that, while both end points of the conflicting edge

have degree at least 2, (1+λ) RLS behaves like RLS. Assume both

end points have degree 2. Since there is no way of resolving the

conflict in one step, all offspring will have the same fitness. Since all

offspring are generated independently and with identical distribu-

tions, we may assume w. l. o. g. that the first offspring is selected for

survival. This means that the remaining offspring are irrelevant and

(1+λ) RLS simulates a step of RLS. If one end point of the conflicting

edge has degree larger than 2, flipping this end point leads to an

offspring with a worse fitness. Hence the only accepted step is to

flip the edge’s other end point. Having multiple offspring can only

decrease the time until this step happens.

Using our upper bound on RLS (Theorem 3.1), (1+λ) RLS resolves

the conflict after any edge insertion after O(1 + 2−λL) generations.
Since one generation creates λ evaluations, the number of evalua-

tions is O(λ + 2−λλL). Since we only have at most n random walks,

the total time for solving random walks is O(λn + 2−λλLn). Itera-
tions where no random walks are necessary make λ evaluations.

Together, this yields an upper bound of λm +O(λ2−λLn).
For λ∗ = max{⌈log(Ln/m)⌉, 1}, the last term simplifies toO(λ∗m)

if log(Ln/m) ≥ 1, or equivalently, Ln ≥ m. Otherwise, the bound is

dominated by the first term O(λ∗m). □

For paths the upper bound from Theorem 6.1 is tight.

Theorem 6.2. The expected reoptimization time of tailored
(1+λ) RLS on a path with any graph traversal is Ω(λm + λ2−λn2).

Proof. The proof is similar to the lower bound for RLS on paths

(Theorem 3.3). Consider a random walk started after inserting the

i-th edge. Recall that the random walk has states 0, . . . , i and both

states 0 and i are goal states. Whenever the state of the randomwalk

is 1 or i −1, there is a probability of 1−2
−λ

that one of the offspring

finds a goal state. As argued in the proof of Theorem 6.1, on states

2, . . . , i − 2 the (1+λ) RLS behaves like RLS. Hence, with probability

2
−λ

, state 2 is reached after the first generation and then (1+λ) RLS
needs at least i − 3 relevant steps in expectation to reach either

state 1 or state i − 1. If this happens, we assume pessimistically that

a proper coloring is found. Summing up expected times as in the

proof of Theorem 3.3 implies the claim. □

7 ISLAND MODELS
We now consider island models that evolve several populations in

parallel and communicate to exchange good solutions. More specif-

ically, at each step of the IR process, there exist λ islands that each

run a tailored RLS. All islands are all started on the same graph after

inserting a new edge, with the same initial coloring. The islands

run independently until the first island has found a proper coloring;

then the proper coloring is shared with all islands (ties broken arbi-

trarily but ensuring that all islands store the same proper coloring).

Note that we implicitly use a complete graph as migration topol-

ogy (though our main result applies to all topologies containing a

triangle). Algorithm 4 shows the respective pseudocode.

Algorithm 4 Incremental Reoptimization (IR) (G =

(V , {e1, . . . , em }), π , A) using an island model

1: Let G ′ = (V , E ′) be a graph with n = |V | isolated vertices

(E ′ = ∅).

2: Let x be a coloring of all vertices chosen uniformly at random.

3: for i = 1 to |E | do
4: Add edge eπ (i) to E

′
.

5: Run λ tailored RLSs onG ′
with x as the initial search point.

In every generation, check whether an island has obtained

a desired coloring. If so, store the final search point in x .

We will show that independent evolution steps are more efficient

than offspring populations. Our main result in this section is:

Theorem 7.1. For any graph traversal order, the expected reopti-
mization time of the island model is Θ(λm) for λ ≥ 3. For λ = 3 we
get an optimal time of Θ(m).
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The surprising finding is that 3 islands are sufficient to obtain

an asymptotically optimal reoptimization time. This is one of very

few examples where island models perform better than offspring

populations. The only other examples we are aware of in the con-

text of rigorous runtime analysis are an artificially constructed

function [11] and a particular instance for the Eulerian Cycle prob-

lem [12]. In the latter case, the speedup is exponential in λ. To our

knowledge, Theorem 7.1 gives the first example where the speedup

is not bounded by a function of λ.
To prove Theorem 7.1, we first study independent fair random

walks and analyze the time until the first random walk reaches the

target state. The following lemma may be of independent interest.

Lemma 7.2. Consider η independent random walks as defined in
Lemma 3.2. LetTη be the first point in time any of the η random walks
reaches state 0, assuming that all random walks start in state 1. Then

(1) There is a constant c > 0 such that Pr
(
Tη ≥ t

)
≤ c−ηt−η/2.

(2) E
(
Tη

)
=


2k − 2 η = 1

Θ(logk) η = 2

O(1) η ≥ 3

Proof. We first consider a single random walk, that is, η = 1.

Here the claim on the expectation follows from folklore argument,

formalised in the first statement of Lemma 3.2.

It is known that Pr (T1 ≥ t) = Θ(t−1/2). This can be derived as

follows. By [6, III.7, Theorem 2]

Pr

(
T1 = t ′

)
=

1

t ′

(
t ′

t ′+1
2

)
· 2−t

′

where the binomial coefficient is 0 in case the second argument is

non-integral. For odd t ′ the above is at least Ω(t ′−3/2). Integrating

over all odd values of t ′ ≥ t yields Pr (T1 ≥ t) = Θ(t−1/2).
Let c be the implicit constant in the upper bound of the Θ ex-

pression. For η > 1, in order for Tη ≥ t , all η random walks must

not have reached the target in the first t − 1 states. Since all random

walks are independent, Pr

(
Tη ≥ t

)
≤ (Pr (T1 ≥ t))η ≤ cηt−η/2.

For η ≥ 3 it suffices to consider η = 3 as T3 stochastically

dominates Tη for η ≥ 3. The expectation can then be derived as

E (T3) =
∑
t

Pr (T3 ≥ t) ≤
∑
t
c3t−3/2 = c3 ·O(1) = O(1).

For η = 2, we use the second statement of Lemma 3.2 to infer that

for all r ∈ N and all t ∈ [2rk2, 2(r+1)k2), we have Pr (T2 ≥ t) ≤ 2
−r

,

thus

∑
2(r+1)k2−1

t=2rk2
Pr (T2 ≥ t) ≤ 2k2 · 2−r . Thus, we get

∞∑
t=2rk2

Pr (T2 ≥ t) ≤ 2k2
∞∑
s=r

2
−s = 4k2 · 2−r .

Choosing r := 2 logk , this is at most 4 and we get∑
t

Pr (T2 ≥ t) =

(4k2
logk )−1∑
t=1

Pr (T2 ≥ t) +
∞∑

t=4k2
logk

Pr (T2 ≥ t)

≤

(4k2
logk )−1∑
t=1

Pr (T2 ≥ t) + 4 ≤

(4k2
logk )−1∑
t=1

c2t−1 + 4

= c2H (4k2 logk) + 4 = O(logk).

A lower bound of Ω(logk) follows from the fact that at least k − 1

steps are needed to reach the reflecting state, and until then the

process behaves as on an unbounded state space. Then E (T2) ≥∑k−1
t=1 Pr (T2 ≥ t) ≥

∑k−1
t=1 c

′ · t−1 ≥ c ′H (k − 1) = Ω(logk) where

c ′ > 0 is the implicit constant in the lower bound of Θ(t−1/2). □

Now we are prepared to prove Theorem 7.1.

Proof of Theorem 7.1. We show that the expected number of

generations for finding a proper coloring after each edge insertion

is O(1) if a random walk is necessary. If an added edge leads to

a conflict, the λ islands perform λ independent random walks as

described in Lemma 7.2. Applying said lemma with η := λ yields

the claimed bound of O(1) generations. Multiplying by λ for the

number of evaluations and summing overm edge insertions yields

the claim. □

8 CONCLUSIONS
Evolutionary algorithms have been applied to a wide range of

dynamic optimization problems. We have shown that dynamic

evolutionary optimization approaches can also be useful to solve a

given static problem if the problem instance is fed to the algorithm

in an incremental fashion.

For 2-coloring bipartite graphs, the simple RLS is effective on all

graph instances if the order of the edges is given based on popular

graph traversals. This includes graphs where RLS fails with an over-

whelming probability in the static case. The order of edges provided

is essential: for a worst-case order or a random order, RLS fails on

trees with an overwhelming probability. However, every graph

traversal leads to polynomial expected times. Comparing popular

graph traversals like depth-first search and breadth-first-search

shows that the latter is more effective as performance guarantees

only depend on the diameter of the graph, whereas for the former

they depend on the length of the longest simple path.

Furthermore, we have shown that offspring populations in the

(1+λ) RLS lead to an exponential speedup for appropriate choices

of λ, since the probability of making the right decision for resolving

a new conflict immediately is amplified. Surprisingly, island models

using parallel evolution to rediscover proper colorings are even

more effective. With only 3 islands, the island model achieves the

best possible runtime of Θ(m) for all graphs with m edges. This

is the first example of a proven speedup with islands that is not

bounded in the number of islands. Island models are also more

robust with respect to the choice of graph traversal and the graph

instance as the expected time for the island model only depends on

the number of edges, for every graph traversal and every graph.

Future work could consider whether the incremental approach

would also work on graphs with a larger number of colors and

whether it proves useful for other combinatorial problems.
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