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ABSTRACT
The majority of algorithms can be controlled or adjusted by
parameters. Their values can substantially a↵ect the algo-
rithms’ performance. Since the manual exploration of the
parameter space is tedious – even for few parameters – sev-
eral automatic procedures for parameter tuning have been
proposed. Recent approaches also take into account some
characteristic properties of the problem instances, frequently
termed instance features.

Our contribution is the proposal of a novel concept for
feature-based algorithm parameter tuning, which applies an
approximating surrogate model for learning the continuous
feature-parameter mapping. To accomplish this, we learn
a joint model of the algorithm performance based on both
the algorithm parameters and the instance features. The
required data is gathered using a recently proposed acqui-
sition function for model refinement in surrogate-based op-
timization: the profile expected improvement. This func-
tion provides an avenue for maximizing the information re-
quired for the feature-parameter mapping, i.e., the mapping
from instance features to the corresponding optimal algo-
rithm parameters. The approach is validated by applying
the tuner to exemplary evolutionary algorithms and prob-
lems, for which theoretically grounded or heuristically de-
termined feature-parameter mappings are available.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Parameter learn-
ing
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Model-based Optimization; Parameter Tuning; Evolution-
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1. INTRODUCTION
In recent years, the systematic use of optimization ap-

proaches for tuning the parameters of evolutionary compu-
tation methods – and other computational algorithms in
general – has attained increasing attention [7]. Many re-
searchers have documented the superiority of automatic tun-
ing approaches over manual trial-and-error procedures, e.g.,
see [2, 13, 15]. In particular, employing surrogate models in
the tuning process is known to usually speed-up the discov-
ery of good parameter settings while also providing informa-
tion w.r.t. the parameters’ e↵ects and interactions [2,5,13].

As evolutionary computation methods are often consid-
ered to be general-purpose approaches, they have to cope
with a wide variety of application problems. In many cases,
however, a single parameter set cannot achieve suitable re-
sults for all problems in a domain of interest, and hence,
setting algorithm parameters w.r.t. instance features that
describe the characteristics of the problem at hand might
be beneficial. For continuous black-box optimization, e.g.,
exploratory landscape analysis provides a large set of fea-
tures for problem instances [17, 18] that have already been
used for the related problem of algorithm selection [4].

The feature-dependent configuration problem is tackled
in, e.g., ISAC [15] and HYDRA [20]. While the former em-
ploys a clustering in feature space and configures the algo-
rithm on each cluster, the latter uses the instance features
for algorithm selection based on a pre-constructed set of
complementary algorithm configurations. Hence, both al-
gorithm do not provide a continuous mapping from features
to parameters, as either fixed instance clusters or algorithm
configurations are pre-constructed. Surrogate models could
e�ciently learn the joint relation between instance features
and algorithm parameters to algorithm performance. But
to the best of our knowledge, no sequential model-based op-
timization technique for parameter tuning actually defines a
point acquisition function that takes instance features into
account during the sequential planning of experiments. The
popular sequential model-based SMAC algorithm [13] does
use instance features, but only to stabilize its search process
for a single configuration which works well on all instances.

Motivated by applications in reliability engineering, Gins-
bourger et al. [9] recently proposed a criterion for sequential
experiments with regard to the estimation of profile optima.
The authors are considering scenarios where the variable
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space is partitioned into a group of controllable decision
variables and a second group of uncontrollable nuisance pa-
rameters. They now would like to estimate a worst-case
scenario. i.e., for each control paramater the worst response
w.r.t. to all nuisance settings must be estimated. They
applied kriging models, also popular in model-based param-
eter tuning [1,16]. While their perspective and motivation is
quite di↵erent to ours, the mapping from instance features
to optimal algorithm parameters can also be considered as
a profile optimum and we can rather directly transfer their
acquisition function to the scenario of parameter tuning.

Our contribution is the adoption of the approach by [9] to
the field of model-based optimization for automatic parame-
ter tuning. Note that the method neither directly optimizes
parameters for a single instance nor (on average) for a set
of instances, but instead defines a new sequential design-
of-experiments procedure to learn a mapping from instance
features to algorithm parameters. The resulting model pro-
vides the basis for a tuner that explicitly uses features of
problem instances to predict the corresponding parameters.

We evaluate the approach on synthetic test problems and
exemplary parameter tuning tasks. In this first concept
study, we restrict ourselves to the simple case of a single fea-
ture and algorithm parameter, as it allows the visualization
of the feature-parameter mappings and their development in
the sequential planning process.

2. METHODOLOGY
In this section, the methodological foundations of our fea-

ture-based parameter tuning approach are presented. After
a brief review of the general procedure of Sequential Model-
Based Optimization (SMBO), we describe its extension uti-
lizing the Profile Expected Improvement for learning the
joint surrogate model.

2.1 Sequential Model-Based Optimization
Let f : ⇥ ! R be a black-box function we would like to

minimize over our search space ⇥. In case of SMBO, we usu-
ally assume that f is expensive to evaluate, so we can only
spend a severely restricted budget of function evaluations.

Algorithm 1: Generic SMBO approach.

Data: Expensive function f , Parameter space ⇥.
Result: Estimated minimum ✓⇤.
begin

X  generateDesign(⇥)
Evaluate y  f(X )
while Termination condition not satisfied do

m̂ fitModel(X ,y)
ymin  min(y)
✓new  optimizeInfillCrit(⇥, m̂, ymin)
Evaluate ynew  f(✓new)
append(X ,✓new), append(y, ynew)

return Estim. minimum ✓⇤ from design X .

The general outline of SMBO is given in Algorithm 1.
In each iteration, we approximate f based on all available
evaluations via a surrogate model, optimize an infill criterion
(or acquisition function) which balances exploration of the
search space and exploitation of promising areas, evaluate
the proposed point and update our model.

Kriging models [14] are frequently used in the context of
SMBO due to their flexibility with regard to possible re-
sponse surfaces and the possibility to estimate the model un-
certainty. The latter is necessary for the Expected Improve-
ment (EI) acquisition function which provides the founda-
tion of the E�cient Global Optimization (EGO) algorithm
by Jones et al. [14]. In the following, we discuss how to
transfer SMBO approaches like EGO to parameter tuning.

2.2 SMBO for Parameter Tuning
Let us assume a configurable algorithm A with parameter

space ⇥ which has to solve problem instances I 2 I drawn
i.i.d. from distribution PI . Hence, PI reflects the probabil-
ity with which instances I 2 I will be presented to A. A
cost function c(I,✓) assigns a cost or performance value to
A with configuration ✓ on instance I 2 I.

We can configure A either on a single instance I by solv-
ing1

✓⇤ = argmin
✓2⇥

f(✓) = argmin
✓2⇥

c(I,✓)

or with regard to the expectation over all instances

✓⇤ = argmin
✓2⇥

f(✓) = argmin
✓2⇥

Z

I2I
c(I,✓)dPI ,

usually by approximating the integral via summing over a
given, finite set of representative instances J ⇢ I

✓⇤ = argmin
✓2⇥

f(✓) = argmin
X

I2J

c(I,✓).

One obvious problem of the latter formulation is that we
only try to find a configuration which behaves well on av-
erage for all instances in J and do not exploit any spe-
cific knowledge we might have about the instances and their
properties. This drawback is addressed in the following.

2.3 Feature Parameter Mapping
Now, we will assume a feature mapping � : I ! �, assign-

ing instance I the describing feature vector �(I). In general,
these features are continuous, such that� ✓ Rp. The fea-
ture mapping should reflect the properties of I and should
not be too expensive to calculate. In this case, it should
help us to determine a reasonable parameter setting ✓ for A
on I. Formally, we would like to obtain a feature parameter
mapping (FPM)

m : � 2 �! ✓⇤
� 2 ⇥ (1)

where ✓⇤
� minimizes our cost when we integrate out over all

instances I which map to �:

✓⇤
� = argmin

✓2⇥

Z

�(I)=�

c(I,✓)dPI

With a slight abuse of notation we will now extend the func-
tion c from the space I ⇥ ⇥ to the space� ⇥ ⇥ by setting
c(�,✓) =

R

�(I)=�
c(I,✓)dPI

Our task now is to learn this profile, i.e. the whole set of
all ✓⇤

� elements, as good as possible during an o✏ine train-
ing phase. Given some prior experiments (�i,✓i, ci)i=1...,n,
where A was run on instance Ii with feature vector �i =
�(Ii) and produced numerical costs ci = c(Ii,✓i), we would

1To simplify notation, we have assumed here that the algo-
rithm is deterministic, otherwise replace c(I,✓) by E✓(I,✓).
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like to learn a joint model ĉ on� ⇥⇥ that predicts the costs
of a configuration ✓ when run on an instance with features
�i. We have to stress in this context that the use of the
features allows the instances to be reasonably located in the
respective space �, but that, depending on the mapping �,
we may observe di↵erent instances I 2 I which are mapped
to the same feature vector �. As a consequence, we may
only obtain a single sample of a distribution of results based
on a single experiment.

This leads to the following approximation of the FPM.
Given a new instance I, we calculate its feature vector �(I)
and optimize the joint model in the subspace while fixing its
first argument to �(I):

✓⇤ = argmin
✓2⇥

ĉ(�(I),✓)

to obtain the configuration ✓⇤ we would use to run A on
I. Hence, assuming we could learn a perfect model ĉ for c,
we could predict accurately for a given instance I, how well
A would perform on average on all instances with the same
features as I.

To learn this joint model, we again employ a regression ap-
proach as in SMBO, now defined on� ⇥⇥ and with the aim
of estimating the profile with minimal costs. The main prob-
lem is to find an e�cient sampling procedure to iteratively
plan our configuration experiments. For this, we cannot use
the EI, as the aim is no longer to only estimate the global
optimum, but to approximate the whole profile of ✓⇤

� for all
I 2 I.

2.4 Profile Expected Improvement
As potential solution, Ginsbourger et al. have introduced

the Profile-EI (PEI) [9]. With regard to their work, the
Profile-Improvement PI(�, ✓) of a potential (i + 1)-th ex-
periment (� = �(I),✓) on an instance I is defined by

PI(�,✓) = max
n

0, C�,✓ �max{cmin, ĉ(�, ✓̂⇤
�)}

o

,

where ĉ(�, ✓̂⇤
�) are the estimated costs for the estimated best

configuration on the given feature vector � depending on the
current approximation of the FPM, cmin = mini=1,...,n ci is
the minimum observed cost value over all experiments, and
C�,✓ is the corresponding random variable from the posterior
distribution defined by the current surrogate model ĉ.

In case of a Gaussian process model, C�,✓ is normally
distributed as N(ĉ(�,✓), ŝ(�,✓)2), with the mean prediction
ĉ(�,✓) and the local uncertainty ŝ(�,✓). This corresponds to
the definition of the EI in EGO. In contrast to EGO, where
we would only use cmin for the approximation of the current
optimum, the potentially infinite number of instances I 2 I
requires a more specific definition.

Ginsbourger et al. recommend to use the predicted costs
ĉ(�, ✓̂⇤

�) of the approximated model optimum

✓̂⇤
� = argmin

✓2⇥
ĉ(�,✓)

for the fixed feature vector �. The capping by means of the
overall observed optimum cost value cmin is recommended
to ensure global exploration, even in cases ĉ(�,✓) locally
overshoots the actual cost function [9].

With these definitions, the Profile-Expected-Improvement
is then computed as PEI(�,✓) = E (PI(�,✓)) in a similar
fashion as the EI. After plugging in the respective proxies,

we obtain the following closed-form definition:

PEI(�,✓) =

8

>

<

>

:

ŝ(�,✓) [g(�,✓)�(g(�,✓))

+�(g(�,✓))] , if ŝ(�,✓) 6= 0

0, otherwise

where � and � are the probability density and cumulative
density function of the standard normal distribution, respec-
tively, and g(�,✓) = (c�min � ĉ(�,✓))/ŝ(�,✓).

Algorithm 2: FBSMBO-Training

Data: Training instances J , parameter space ⇥,
feature mapping �, algorithm A, cost function
c(I,✓).

Result: Mapping m̂ : �! ⇥.
begin

X  generateDesign(J , � ,⇥)
X now consists of tuples (I, �,✓)
y  Evaluate each element of X with c(I,✓)
while Termination condition not satisfied do

ĉ fitModel(X ,y)
cmin  min(y)
for Ij 2 J do

�  �(Ij)

c

�
min  optMeanOnInstance(ĉ, Ij , cmin)

PEI[j],✓[j] optPEIOnInstance(ĉ, Ij , c
�
min)

Set Inew,✓new by taking the max of PEI[·]
Run A(Inew,✓new), i.e. ynew  c(Inew,✓new);
append (X , [Inew, �(Inew),✓new])
append (y, ynew)

return m̂ : �! ⇥

2.5 Feature-Based SMBO
Our Feature-Based SMBO (FBSMBO) configurator works

in a similar fashion as the standard SMBO algorithm. We
start by generating an initial design X = {x1, . . . ,xn} with
xi = [�i,✓i] 2 � ⇥ ⇥, which is evaluated by running the
associated experiments. Hence, in addition to SMBO an
instance Ii is connected to each design point, since algorithm
A needs the instance for the evaluation of the design point
and the respective feature vector �(Ii) is used as additional
input for the model fitting. This data is then used to fit the
machine learning model ĉ of the cost landscape.

The evaluation of the parameter/feature-vector pair will
result in a noisy response for two reasons. First, most evolu-
tionary computation methods are stochastic in nature which
may lead to di↵erent outcomes of the same parameterization
on the same instance. Second, the feature mapping, such as
the input dimension of a respective instance, may result in
the same feature-vector � for di↵erent problem instances. If
experiments with the same algorithm parameters ✓ are per-
formed on all these instances, the performance values y will
likely di↵er. As the surrogate model ĉ maps from ✓⇥� to y,
a high variation within the response of a single input vector
can occur. Hence, the fitModel is implemented by utilizing
the reinterpolation procedure proposed by Forrester et al.
in [8] for noisy computer experiments. In this procedure,
first a regressing kriging model is fitted. Then, the pre-
dictions of this model are used as proxies for the expected
response values of the design points, to which another inter-
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polating model is fitted. The resulting model is then used for
determining further design points in an SMBO manner. By
these means, the variations in the responses are smoothed
while allowing the variance of the model still to be used for
ensuring a global search [8].

Within the FBSMBO loop (see Algorithm 2), FBSMBO
iterates over all instances I 2 I to compute (a) the respec-
tive minimum cost value proxies c

�
min for the PEI formula

(optMeanOnInstance) and (b) the optimal configuration and
PEI value on the subspace of algorithm parameters given the
fixed instance features � = �(I): max✓2⇥ PEI(�,✓). Here
the feature vector is fixed and optimization takes place on
the subset of algorithm parameters.

The instance I with maximal PEI(�,✓⇤
�) and correspond-

ing estimated optimal parameter vector is selected to be con-
sidered for the next experiment. This process is repeated
until a stopping condition is met. The o✏ine phase returns
an FPM m̂ : � ! ⇥, which is constructed from the joint
model ĉ(�,✓) by optimizing over the subspace of algorithm
parameters given a fixed feature vector �. The FPM can be
applied to determine parameters for previously unseen in-
stances I as part of the online (application) phase, as shown
in section 2.3.

3. EVALUATION
In this section, we empirically evaluate the proposed FB-

SMBO approach for parameter tuning. We start by analyz-
ing the behavior of the configurator on synthetic examples,
before we apply it to some practical parameter tuning sce-
narios. All of our experiments were performed in R by using
the BatchJobs and BatchExperiments packages [3].

3.1 Synthetic functions
For the first set of experiments, we consider an artifi-

cial two-dimensional scenario. The first dimension will be
regarded as the “instance feature” �, while the second di-
mension represents the “algorithm parameter” ✓. We hence
model a two-dimensional cost function c : �⇥⇥! R, which
we assume to follow a deterministic test function. This al-
lows quick test runs and a visual check of the results to be
performed in a known scenario. For the preliminary exper-
iments, we selected the well-known black-box optimization
functions Branin, Himmelblau, and Goldstein-Price [11,14].
Moreover, we defined a simple Double-Sum to obtain profile
curves ✓⇤

� of di↵erent complexity and shape.
For the active learning of the FPM, we ran both the PEI

infill strategy and – for comparison – a random sampling
(RANDOM) on each test function. The latter selects the in-
stances and algorithm parameters (�,✓) evaluated for fitting
the model completely at random. Each strategy was started
from the same initial design of 10 points and was allowed a
budget of 30 subsequent evaluations. This experiment was
replicated 30 times, resulting in 30 models m̂ for the FPM
of each strategy. To quantify the approximation quality of
each FPM m̂

S based on infill strategy S, we computed the
mean absolute di↵erence between the algorithm performance
based on the proposed and the known optimum parameters
over an equidistant grid of features �1, . . . , �k 2 �. More
specific, if m is the true FPM based on the original test func-
tion, the performance measure is computed by the formula

PERF (S) =
1
k

k
X

i=1

|c(�i, m̂(�i))� c(�i,m(�i))| .

We compare the infill strategies by means of this quality
measure, whereby lower PERF values are favorable.
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Algorithm PEI RANDOM

Figure 1: Boxplots of the distributions of the perfor-
mance values reached in the experiments separated
by test function and infill strategy used.

Figure 1 shows the distribution of performance values for
each infill strategy used. Obviously, the quality of the model
learned with the PEI is notably better. For Branin, Double-
Sum and Goldstein-Price the upper quartile of PEI coincides
with the lower quartile of random sampling. In case of the
Himmelblau function, the upper quartile at least coincides
with the respective median.

Function Min. Median Mean Max. p-value
Branin -1.38 -0.05 -0.13 0.01 0.01

Double-Sum -3.95 -0.11 -0.30 1.43 0.04

Goldstein-Price -1.03 -0.54 -0.46 0.37 0.00

Himmelblau -1.55 -0.07 -0.13 1.72 0.09

Table 1: Statistics based on the paired di↵erences
of the performance values of both strategies per run
and p-values of the respective t-test for the synthetic
functions.

In addition, Table 1 summarizes measures of central ten-
dency and the p-values of the paired t-test checking the one-
sided null hypothesis of a zero mean of the paired di↵erences
per experiment. For significance level ↵ = 0.05, all functions
but Himmelblau result in significant improvements. This re-
sult is strong, since the test functions are known to be pre-
dicted well with only about half of the design points used
in our experiments [14]. Nevertheless, we see notable sta-
tistical evidence for the superiority of the PEI approach as
compared with the naive sampling of random infill points
for profile curve reconstruction.

3.2 Mutation rate of the (1+1)-GA
In this section, we analyze whether FBSMBO is capable

of learning the optimum parameter configurations for the
(1+1) Genetic Algorithm (GA) on the OneMax test func-
tion. The (1+1)-GA operates on binary representations of
dimension n, maintains a population of only a single indi-
vidual and makes solely use of a simple bit-flip mutation
operator with mutation rate pm 2 (0, 1). For linear func-
tions of type y(x) = ⌧ +

Pn
i=1 wixi, ⌧ 2 R and non-negative

weights wi, i = 1, . . . , n, the expected runtime of the (1+1)-
GA is in ⇥(n log n) [6]. This result, however, is only valid
if pm = c/n for some constant c. Setting c = 1, this re-
quirement resulted in the common recommendation for the
mutation rate widely used in the field of evolutionary com-
putation. It defines a reference FPM, as it defines the mu-
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tation rate pm as a function of the problem feature decision
space dimension n.

We applied FBSMBO to approximate a similar FPM based
on experiments with the (1+1)-GA on the OneMax function

OneMax : {0, 1}n ! N, OneMax(x) =
n
X

i=1

xi.

The main research question is whether FBSMBO is capable
of finding parameter configurations, which are competitive
with the theoretical reference parameters with regard to the
actual average runtime.
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Figure 2: Boxplots of the ERT of the (1+1)-GA
with mutation rates pm set according to the FPMs
obtained by FBSMBO with Profile-EI (PEI), ran-
dom sampling (RANDOM), or the theoretical rec-
ommendation (THEO).

To answer this question, we ran 30 experiments with PEI
and random sampling. In each experiment, we started with
an initial design of size 20 and performed 100 sequential
optimization steps to learn the optimal feature parameter
mapping. The training set consists of all n-dimensional
OneMax problems with n 2 {10, . . . , 100}, as preliminary
experiments indicated, that for n < 10 the e↵ect of the
initialization resulted in a too high relative variance. Dur-
ing the training phase, the number of evaluations used by
the GA until finding the optimum solution was used as cost
function c. For the a-posteriori evaluation of the resulting
FPMs, the (1+1)-GA with the respective mutation probabil-
ity performed 10 runs with at most n2 function evaluations
at each design point to estimate the expected running time
(ERT) [11]. This resulted in 30 runtime estimates for each
infill strategy. As a reference performance, we used the ERT
of the (1+1)-GA with the theoretically recommended value
pm = 1

n .
Figure 2 shows boxplots of the distributions of the log-

transformed ERTs partitioned by problem dimension with
only a part of the considered dimensions being shown for rea-
sons of visual clarity. The superiority of the FPMs learned
using the PEI infill strategy opposed to ones of random sam-
pling can clearly be observed. The recommended parameters
outperform the latter for all values of the feature parame-
ter. The Wilcoxon test2 for paired samples rejects the null
hypothesis of equal runtimes in all cases.

Moreover, Figure 2 reveals that there is a low variance
in the PEI recommendations. This indicates that the corre-
sponding configurator determined similar FPMs in all exper-

2We used the Wilcoxon test in this case, because the nor-
mality assumptions of the t-test were violated.

iments. In comparison, the FPMs learned with RANDOM
show a high variance. Hence, the PEI-based training phase
provides more robust FPMs.

This observation is supported by the visualization of the
FPMs in Figure 3. Except for the experiments 2, 3, 10, 11,
14, 15, and 24, the PEI profile curves mimic the theoretical
profile curves. In contrast, the profile curves obtained by a
RANDOM sampling of the training data have a very high
variance with no recurring pattern. In some cases, the the-
oretical trend of decreasing pm with increasing n is even in-
verted. Whereas the focused sampling around the estimated
FPM stabilizes model prodiction, RANDOM sampling may
lead to penalized, nonconverging algorithm runs. These runs
lead to a higher variation in the model landscape and thus
to a deterioration of the prediction quality.

The restriction to one problem feature and one algorithm
parameter makes it possible to visually analyze this issue
over the sequential training process. Figure 4 shows a typical
FPM based on the kriging model after the initial design,
and its evolution after 50 respectively 100 sequential infill
experiments. It is hard for the model to predict the FPM
using only the initial design (Figures 4a and 4b).
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Figure 3: FPMs obtained from theory (THEO)
or the model based on the training data obtained
by the respective sampling strategy (PEI or RAN-
DOM) in run 1 to 30.

However, after 50 iterations, the PEI-based FPM can pre-
dict the general trend of the reference profile curve pm = 1

n
(see Figure 4c). The increased sample density of the sequen-
tial points (blue) in the vicinity of the FPM is clearly visible.
In contrast, the RANDOM-based FPM shows an oscillating
behavior (see Figure 4d) indicating an instable model. Even
if the oscillations can be reduced with 100 sequential sam-
ples, the approximation of PEI-based FPM remains better.
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FBSMBOwith a PEI-based infill strategy produces FPMs,
which are 1) almost similar regarding runtime and 2) mimic
the theoretically known FPMs. We can thus confirm its
suitability based on this study.
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(a) PEI, Iteration 0
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(b) RANDOM, Iteration 0
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(c) PEI, Iteration 50
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(d) RANDOM, Iteration 50
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(e) PEI, Iteration 100
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(f) RANDOM, Iteration 100

Figure 4: Typical sampling during the training
phase of FBSMBO for the configuration of the
(1+1)-GA. Model landscape, proposed FPM (solid
black) and reference FPM (dashed black) after 0,
50 and 100 sequential experiments according to the
PEI (left column) or random sampling (right col-
umn) infill strategy.

3.3 Population size for the CMA-ES
In our second practical example, we consider the tuning

of the well-known Covariance-Matrix-Adaption Evolution-
ary Strategy (CMA-ES) [10], which is one of the state-of-the-
art optimizers for numerical black-box optimization. Specifi-
cally, we consider the o↵spring size �, as the o�cial CMA-ES
implementation by Nikolaus Hansen proposes a default set-
ting � = 4+ b3 log(n)c which can be considered as reference
FPM. We term this setting the �-rule in the following. Again
n denotes the number of decision space dimensions and is
considered as the only problem feature. In contrast to the
former GA experiment, the �-rule comes with no theoretical
guarantees and is of heuristic nature. For instance, Hansen
et al. showed by empirical means that for highly multimodal
functions �� n can be beneficial [12]. This result indicates
that the FPM should be adapted for di↵erent kinds of test
problems.

Our experiments aim at learning an FPM from the prob-
lem dimension n to the o↵spring size � by applying FB-
SMBO to the CMA-ES on di↵erent subsets of the well-

●
●●
●●
●

●

●

●

●

●

●

●
●●
●●

●

●

●

●

●●●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●
●●

●

●●

●

●

●
●

●
●
●

●

●

●

●

●

●●●

●

●

●

●

●●

●●

●
●

●

●

●●

●
●

●

●

●

●●●●

●

●

● ●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●

●●●
●●●

●
●
●●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

● ●
●●

●

●●●

●

●

●●

●

●

●

●

●
●●●

6

8

10

12

6

8

10

12

6

8

10

12

1. Separable
2. Low

−C
onditioning

3. H
igh−C

onditioning

2 6 10 14 18 22 26 30 34 38
Dimension (Feature)

lo
g(

ru
nt

im
e)

Algorithm PEI RANDOM THEO

Figure 5: Boxplots of the ERT of the CMA-ES with
o↵spring size � set according to the FPMs obtained
by FBSMBO with Profile-EI (PEI), random sam-
pling (RANDOM), or the heuristic �-rule (THEO).

known noiseless testbed of the BBOB2009 benchmarking
functions. More specific, we investigated the first three
BBOB2009 groups of functions: the separable ones, the
ones with low or moderate condition, and the high or ill-
conditioned ones [11]. For each, models m̂ for estimating
the FPM are learned. The experimental setup is similar to
the one described in the previous section, but we needed to
reduce the number of experiments due to an increased com-
putational e↵ort of a single experiment. Concretely, after
the initial design of size 10 we reduced the budget to 40 se-
quential experiments based on PEI and RANDOM sampling
strategy. Again 30 independent experiments with di↵erent
initial designs were performed on each BBOB group.

The instance training set consists of all functions from
the respective BBOB group with dimensions n 2 {2, . . . , 40}
that have a BBOB instance ID i 2 {1, 2, 3}, where i denotes
the specific variant of the test function. To estimate the
ERT [11] of the CMA-ES, we ran it five times on each design
point with a captime of 200, 000 function evaluations. If the
global optimum was not approximated up to a tolerance of
0.03 within the given time budget in any of the five runs3,
the execution was penalized by a value of 3 · 200, 000.

In Figure 5, boxplots of the resulting ERT distributions
are shown in groups according to exemplary problem dimen-
sions and the distinct BBOB groups. All strategies are capa-

3The tolerance was set in order to have a su�ciently high
number of successful (unpenalized) experiments within the
maximum budget (cf. Table 2). Higher budgets were not
feasible due to restrictions with regard to the computational
time required for the experiments.
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ble of identifying the increase of � with increasing dimension.
In general, no significant di↵erences between the �-rule and
the FPMs obtained by PEI and RANDOM can be observed
with respect to the median performance. Nevertheless, the
results of the sampling strategies are not satisfying due to
the high variation in the ERTs – in particular on the second
BBOB group.

Group function success failure

group 1

Büche-Rastrigin 3 (0.9) 320 (99.1)
Ellipsoidal 288 (95.7) 13 (4.3)
Linear Slope 249 (84.1) 47 (15.9)
Rastrigin 27 (9.9) 246 (90.1)
Sphere 307 (100.0) 0 (0.0)

group 2

Attractive Sector 372 (100.0) 0 (0.0)
Rosenbrock (original) 372 (95.6) 17 (4.4)
Rosenbrock (rotated) 350 (95.6) 16 (4.4)
Step Ellipsoidal 87 (23.3) 286 (76.7)

group 3

Bent Cigar 299 (100.0) 0 (0.0)
Di↵erent Powers 315 (100.0) 0 (0.0)
Discus 303 (100.0) 0 (0.0)
Ellipsoidal 272 (94.1) 17 (5.9)
Sharp Ridge 197 (67.0) 97 (33.0)

Table 2: Absolute and relative (percentage) num-
ber of successes (finding the global minimum in at
least one of the five runs) and failures (running until
the captime in all five runs) for the functions of the
considered BBOB groups.

For further analyzing this variation, Table 2 shows an
overview of the successful and failed runs separated by BBOB
group and test function. In the table, “failed”means that the
global minimum was not reached up to the desired tolerance
within the captime in any of the five repetitions. Each group
– groups one and two in particular – contains at least one
function which is rarely minimized successfully. In addition,
the ERTs of the CMA-ES on the distinct functions vary in
orders of magnitude. Hence, it is possible that identical de-
sign points show extremely distinct ERT values. The feature
vector � and the BBOB classification do not provide su�-
cient information about the characteristics of each instance.
The intra-group heterogeneity is high. For instance, the
first group of separable functions consists of the unimodal
Sphere function as well as the highly multimodal Rastrigin
and Büche-Rastrigin functions with approximately 11n local
optima. The noise level of the cost function to be learned by
the model is thus extremely high. In addition, the penaliza-
tion forces discontinuities within the response surface. The
underlying Gaussian process model of FBSMBO, hence, has
to cope with a high noise variance and irregular response
values. Both aspects deteriorate the prediction quality of
the model. As the latter issue could be addressed by using
log- or rank-transformation of the performance values be-
fore model fitting [19], the former aspect requires the use of
more powerful instance features [4]. We will investigate this
in near future.

For improving the model quality, we reduced the set of
training instances considerably and tried to learn FPMs for
the Sphere function only. As a consequence, inhomogeneities
within the training instances no longer exist. The observed
ERTs for this setup are shown in Figure 6. It can be ob-
served that the ERTs of the CMA-ES can be improved in
comparison to the �-rule for almost all problem dimensions.
This observation holds for the FPMs obtained by both infill
strategies. The PEI-based FPMs, however, still improve the

ERTs by a statistically significant amount for all problem
dimensions.

The reasons for these improvements are shown in Figure 7.
The computed FPMs di↵er considerably from the general
�-rule, while still showing a monotonically increasing trend
with higher problem dimensions. Whereas the FPM recom-
mends o↵spring sizes around � = 5 for n = 10 and between
� = 6 and � = 9 for n = 38, the �-rule would recommend
� = 6 for n = 10 and � = 15 for n = 38. Again, the FPMs
obtained by the PEI-based training data show a more con-
sistent trend than the ones with random sampling. They
also maintain monotonicity in almost all cases.
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Figure 6: Boxplots of the ERT of the CMA-ES with
o↵spring size � set according to the FPMs obtained
by FBSMBO with Profile-EI (PEI), random sam-
pling (RANDOM), or the heuristic �-rule (THEO)
on the sphere functions.
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Figure 7: FPMs obtained from theory (THEO)
or the model based on the training data obtained
by the respective sampling strategy (PEI or RAN-
DOM) in run 1 to 12 of the CMA-ES on the sphere
function.

4. CONCLUSIONS
In this paper, we proposed how to use a surrogate model

to learn a mapping from features describing the characteris-
tics of problem instances to the respective optimum control
parameters of the optimization algorithm. Our experiments
revealed that the concept of profile expected improvement is
capable to guide the sequential sampling process for refining
the joint surrogate model. The feature parameter mapping
obtained from the so-trained model can significantly increase
the quality of the resulting configurator. In addition, prac-
tical experiments with the CMA-ES highlighted the require-
ment to find features that are meaningful with regard to the
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algorithm’s performance. In this context, ELA features [17]
might be a good starting point.

In the presented case studies, we only learned mappings
from a single feature to a single continuous parameter. In
the future, we plan further experiments to confirm the suit-
ability and the potential of our approach for the general case
of multiple features and algorithm parameters. Clearly, us-
ing more than just a single feature for the mapping should
have beneficial e↵ects. Further options for improving the
configurator are transformations of the performance values
prior to the modeling step.

In contrast to the tuning of continuous algorithm parame-
ters, so-called algorithm configuration is more complicated.
For instance, categorical and dependent parameters have to
be considered. It should be noted that our ideas, as they
mainly deal with the definition of an appropriate acquisi-
tion function, can in principle be applied to more complex
parameter spaces. Forthcoming work will investigate the
FBSMBO approach to configure algorithms including more
complex parameters by exchanging the currently used con-
tinuous kriging model with a better suited model for mixed
spaces (e.g. random forests).
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