
An Extended Mutation-Based Priority-Rule
Integration Concept for Multi-Objective Machine

Scheduling
Jakob Bossek and Christian Grimme

University of Münster, Department of Information Systems
48149 Münster, Germany

Email: {bossek, christian.grimme}@uni-muenster.de

Abstract—There exist many optimal or heuristic priority rules
for machine scheduling problems, which can easily be integrated
into single-objective evolutionary algorithms via mutation opera-
tors. However, in the multi-objective case, simultaneously apply-
ing different priorities for different objectives may cause severe
disruptions in the genome and may lead to inferior solutions. In
this paper, we combine an existing mutation operator concept
with new insights from detailed observation of the structure of
solutions for multi-objective machine scheduling problems. This
allows the comprehensive integration of priority rules to produce
better Pareto-front approximations. We evaluate the extended
operator concept compared to standard swap mutation and the
stand-alone components of our hybrid scheme, which performs
best in all evaluated cases.

I. INTRODUCTION

Scheduling—the assignment of activities or jobs to limited
resources over time—is an important and widely discussed
topic in operations research. However, there is still a gap
between problem-solving capabilities in single-objective and
multi-objective scheduling. That gap is mainly rooted in
the difficulties of transferring the theoretically well founded
scheduling approaches from the single-objective domain to
the multi-objective domain. Although theoreticians and prac-
titioners agree on the importance of considering multiple
objectives in real-world scheduling problems, theoretically
founded approaches for multi-objective scheduling are scarce.

Unlike multi-objective scheduling, single-objective schedul-
ing problems have been extensively investigated over the last
50 years. Research provides a huge amount of complexity
results, optimal algorithms, and approximative heuristics (see,
e. g., Pinedo [1] or Dutot et al. [2] for an introduction). What
is most annoying: up to now, it seems almost impossible to
make use of these results in an universal manner for the multi-
objective domain [3].

The more general notion of optimality for multiple objec-
tives is certainly one of the main reasons: For minimiza-
tion problems with m objectives, an optimal compromise
is reached, if for an objective �

i

, the value f
�i can only

be decreased by increasing another objective value f
�j with

�
i

6= �
j

and i, j 2 {1, . . . ,m}. All objective vectors F =

(f
�

1

, . . . , f
�m) that fulfill this property are called members of

the Pareto-front [4].

Often applied priority rules in the single-objective schedul-
ing domain produce good solutions for a single objective. For
multiple objectives, priority rules are usually as contradicting
as the objectives themselves. This problem does not vanish,
when applying meta heuristics like evolutionary algorithms
for solving the multi-objective problems. In fact, the problem
appears again, when trying to hybridize the respective evolu-
tionary algorithm, i. e., when we include the single-objective
expertise into some search mechanism of the general heuristic
framework (e. g., inclusion into the variation operators).

In this paper, we address these challenges and propose
a general mutation operator concept for effectively integrat-
ing single-objective priority rules for scheduling into multi-
objective evolutionary search. This concept is based on a first
proposal of Grimme et al. [3] and extended towards a general
concept. Therefore, we include insights, which are gained
by an analysis of optimal solutions for a special scheduling
problem. After an introduction on multi-objective scheduling
and common priority rules in section II, we analyze the
structure of optimal multi-objective schedules in section III
and derive the proposed extension of the current concept from
these insights in section IV. In section V we analyze the
applicability of our concept before concluding the paper in
section VI.

II. PRIORITY RULES AND MULTI-OBJECTIVE SCHEDULING

A multi-objective scheduling problem comprising m objec-
tives can be formulated using the three-field-notation

↵|�|�,
introduced by Graham et al. [5], where the ↵ field contains the
machine environment, the � field holds a list of constraints,
and the � field contains a list of m unprioritized objectives
�
1

, . . . , �
m

. Here we consider ↵ = 1 for single machine
and ↵ = P

m

for parallel identical machine environments.
Additionally, we consider release dates r

j

2 N
0

for a job
j 2 I = {1, . . . , n} ⇢ N

>0

as the only constraint. For each
job j, we further denote the processing time as p

j

2 N
>0

and
the due date as d

j

2 N
>0

. For our study and operator design
approach, we consider a subset of the common scheduling
objectives, namely: (1)

P
C

j

=

P
I

C
j

as sum of completion
times C

j

; (2) L
max

= max{L
1

, . . . , L
n

} as maximum lateness

978-1-5386-2726-6/17/$31.00 ©2017 IEEE
Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 03,2022 at 14:54:59 UTC from IEEE Xplore. Restrictions apply.

with lateness defined as L
j

= C
j

�d
j

; and (3)
P

U
j

=

P
I

U
j

as number of tardy jobs with U
j

= 1, if job j is late and
U
j

= 0 otherwise.

A. Single-Objective Priority Rules
In a nutshell, the general scheduling task is to find a

sequence of jobs according to some priority rule before
dispatching them on machines. Depending on the machine
environment and objective under consideration, priority rules
are often rather straight forward. The problem 1||PC

j

is
solved to optimality with the shortest processing time first
(SPT) rule [6] while the 1||L

max

problem is optimally solved
using the earliest due date first (EDD) ordering [7]. The latter
is also the foundation for Moore’s algorithm [8] for 1||PU

j

.
The one machine problem 1|r

j

|L
max

is NP-complete. Here,
EDD ordering serves as a simple heuristic without any perfor-
mance guaranties. In the parallel machine environment SPT
also solves the problem P

m

||PC
j

to optimality [1]. The
problems P

m

||L
max

and P
m

||U
j

are NP-hard. For the latter
Süer et al. [9] proposed a good heuristic to determine job
priority based on Moore’s approach for the one machine case.
A comprehensive collection of priority rules can be found
at [10].

B. Multi-Objective Scheduling
Multi-objective scheduling problems can easily be defined

by adding some objectives to the � field of the above notation.
However, the theoretical and heuristic results for solving these
problems are rather scarce. In fact, only very few problems are
known to be optimally solvable in polynomial time.

One such polynomially solvable problem is 1||PC
j

, L
max

,
considering total completion time of all jobs and maximum
lateness on a single machine simultaneously. Van Wassen-
hoven and Gelder [11] proposed an efficient algorithm for
this problem, which considers the single-objective results
for 1||PC

j

and 1||L
max

as integral building blocks of the
procedure.

In a first step, the so-called SPT/EDD-solution (i. e., the SPT
rule is applied, breaking ties with the EDD rule) is computed
as a stopping criterion for the algorithm. Then the algorithm
mainly follows the EDD-rule with step-wise relaxation:

1) Determine L = L
max

(EDD), which is obviously smaller
or equal to L

max

(SPT/EDD).
2) Redefine the current scheduling problem by adding L to

the current due dates. Under the new problem, no job
violates the due dates anymore. Optimize the schedule
according to

P
C

j

as secondary criterion without vio-
lating a due date. This yields the Pareto-optimal point.

3) Determine the minimum increase L0 of the current due
dates to achieve a better value of

P
C

j

.
4) Set L = L0. Go to step (2) unless the algorithm reaches

L
max

(SPT/EDD), the stopping criterion.
This procedure generates all Pareto-optimal solutions for
the problem with overall time complexity of O(n3

log n).
Pinedo [1] provides a detailed description of the algorithm
and an example.

The most interesting aspect of this algorithm is, that it
allows insight into the generation of Pareto-optimal solutions
for scheduling problems. We can observe, how the solution
for a single objective is transformed to intermediate trade-off
solutions and how the job sequence is changed during this
process. Thus, we use this algorithm as a starting point for
our analysis in section III.

C. Heuristic Approaches and Computational Intelligence
Apart from the few deterministic approaches, scheduling

literature mainly provides discussion on the complexity of
multi-objective problems as well as simple proofs of NP-
hardness (see, e. g., Chen and Bulfin [12] or Hoogeveen [13]).
Thus, in practice, most problem solving approaches rely on
general but heuristic schemes like multi-objective algorithms.

The basic idea of these algorithms stems from an abstract
model of the Darwinian evolution theory, where a population
of individuals is exposed to (environmental) selection pressure.
Under this selection only the best adapted individuals survive
and, thus, are able to reproduce. During the reproduction
process, variation, and recombination of parental individuals
(i. e., solutions) lead to slight deviations of the genetic struc-
ture and often to slightly different solutions. If an offspring’s
quality exceeds the parental quality, the offspring will more
likely survive the selection process [14] and becomes able to
reproduce.

Many successful approaches for evolutionary multi-
objective optimization use the Pareto-dominance relation as
primary selection mechanism supported by a secondary, diver-
sity preserving mechanism (e. g., NSGA-II [15], SPEA2 [16],
SMS-EMOA [17]). Apart from these mechanisms, most evo-
lutionary multi-objective algorithms follow the standard evo-
lutionary loop. Considering the case of integer or permutation
encoded problems, solutions are varied (as in a single-objective
evolutionary algorithm) with standard variation operators [18].
Thus, as in the single-objective case, variation operators
provide the direct interface for generating problem-specific
solutions in search space. On the other hand, Grimme et al. [3]
argue, that integrating single-objective scheduling priority
rules into these components is not trivial. As a consequence,
the authors propose a decoupled predation-inspired approach
to include multiple single-objective variation influences. Ad-
ditionally, they propose a mutation operator for including
scheduling preference rules, by applying then to small blocks
in the schedule permutation encoding. Recently, Pereira et
al. [19] adopted this approach for the unrelated machine model
in the scheduling domain. In contrast, Lang and Grimme [20]
propose a general framework for expert knowledge integration
into preference-based evolutionary multi-objective algorithms
like R-NSGA-II [21] and MOEA/D [22] and show the flexi-
bility of this approach, also in the context of scheduling.

In this work, we address priority-rule integration into any
general standard algorithm. As we are only interested in the
variation operator as vehicle for this integration, the surround-
ing evolutionary meta-heuristic is of no importance. Thus, we
rely on the probably most commonly used multi-objective

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 03,2022 at 14:54:59 UTC from IEEE Xplore. Restrictions apply.

evolutionary algorithm, NSGA-II. Therein, during selection,
the population is evaluated regarding Pareto-dominance first:
All non-dominated individuals of the entire population are
assigned rank 1 and removed from the population. From the
remaining individuals the non-dominated ones are classified
in rank 2. This procedure is repeated until all individuals are
ranked. A rank-proportional fitness assignment guarantees, that
individuals in rank 1 reproduce more often than individuals in
rank 2 and so on. NSGA-II also takes the density of solutions
around a particular solution into account. This secondary
selection criterion is called crowding distance and applied as
comparison operator during dominance selection in order to
break ties.

III. STRUCTURES OF OPTIMAL SOLUTIONS

As stated in section II-B we strive for the integration
of priority rules into variation operators of an evolutionary
multi-objective algorithm. Therefore, we analyze the structure
of Pareto-optimal solutions in search space, consisting of
permutation strings of jobs. We specifically aim to analyze
and verify a property implicitly claimed by the construction
principle of the so-called �-block mutation operator proposed
by Grimme et al. [3]. This mutation operator works as depicted
in figure 1. A position t in the index range of the permutation
string is selected randomly. Then, a sub-string (block) of
size 2� + 1 is selected symmetrically around t and sorted
according to a given priority rule (e. g., SPT or EDD). The
parameter �, which determines the block size is selected
normally distributed. Note, that the block is truncated, if it
exceeds the boundaries of the permutation string.

σ σ

permutation-encoded genome

Fig. 1. Working principle of the �-block mutation operator. A block of size
2� + 1 is randomly selected and sorted according to a priority rule.

Grimme et al. [3] show, that this operator improves the
solution quality of an evolutionary multi-objective algorithm
(specifically the used predator prey approach), when applied
to a population using different objective-related priority rules.
The operator implicitly postulates that Pareto-optimal solutions
can be constructed from building blocks, which are internally
sorted according to one of the applied priority rules.

In order to analyze and evaluate this claim and to addi-
tionally gain insight into trade-off construction, we solved
20 instances1 of different size (ranging from 25 to 100
jobs) regarding 1||PC

j

, L
max

to optimality using the before
described algorithm of van Wassenhoven and Gelder (see
section II-B). Then we compared the gained Pareto-optimal

1A detailed description of the generation process and the properties of these
instances is provided in section V-A.

solutions to the extremal EDD and SPT(EDD) solutions,
respectively. Specifically, we evaluate

• the longest common sub-string (i. e., consecutive block)
of each solution compared with the extremal solutions
and

• the longest common sub-sequence (i. e., longest not
necessarily blocked sequence of same order) of each
solution compared with the extremal solutions.

Both measures are normalized to [0, 1] by the maximal pos-
sible common sequence length n. Note, that these measures
are lower bounds of similarity: only the longest common
sub-{sequence,string} is considered. However, there may be
multiple intermingled sequences.

For each instance the results were plotted as box plots. Four
instances are exemplarily shown in in figure 2. Obviously,
the maximum length of common sub-strings of the EDD
solution and all remaining Pareto-optimal solutions (leftmost
box plot) is rather low (ranging between 0.11 and 0.14 for the
depicted 25 job instance and between 0.01 and 0.10 for the
100 job instance). A similar behavior can be observed for the
comparison of trade-off solutions with the SPT(EDD) solution
(second from left box plot). Due to the working principle of
van Wassenhoven and Gelder’s algorithm, longest common
blocks and sequences sometimes are equal to the SPT(EDD)
solution.

●
●

●

●
●●●●●●●●●●●●●●●●● ●●●●●

●●●●●●●●●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●

instance−025−1 instance−050−1 instance−075−1 instance−100−1

Bloc
k (

EDD)

Bloc
k (

SPT)

Seq
ue

nc
e (

EDD)

Seq
ue

nc
e (

SPT)

Bloc
k (

EDD)

Bloc
k (

SPT)

Seq
ue

nc
e (

EDD)

Seq
ue

nc
e (

SPT)

Bloc
k (

EDD)

Bloc
k (

SPT)

Seq
ue

nc
e (

EDD)

Seq
ue

nc
e (

SPT)

Bloc
k (

EDD)

Bloc
k (

SPT)

Seq
ue

nc
e (

EDD)

Seq
ue

nc
e (

SPT)
0.00

0.25

0.50

0.75

1.00

Measure

N
or

m
al

ize
d

va
lu

e

Fig. 2. Analysis of solution structure of the Pareto-optimal solutions for a
scheduling instance with n = 25, 50, 75, 100 jobs respectively (from left to
right) considering problem 1||

P
Cj , Lmax

. Depicted are the distributions of
normalized longest sub-blocks (Block (EDD), Block (SPT)) and normalized
longest sub-sequences (Sequence (EDD), Sequence (SPT)) compared to the
pure EDD and SPT solutions respectively.

These findings suggest, that the Pareto-optimal solutions
usually consist of very small blocks, which adhere to a single
priority rule. This again suggests, that the concept of the �-
block mutation operator may not be sufficient to effectively
integrate priority-rules.

Analyzing the longest common sub-sequences (two right-
most box plots) indicates that an operator constructing non-
block-consecutive sequences throughout the string may also
contribute to an effective construction of trade-off solutions.
Both, EDD and SPT sub-sequence lengths exceed the max-
imum length of block sub-strings by far. This behavior was
consistently observed for all 20 instances.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 03,2022 at 14:54:59 UTC from IEEE Xplore. Restrictions apply.

IV. A PRIORITY MIXTURE OPERATOR

The findings from section III directly lead to a different
operator concept for integrating priority-rule-based expertise
into mutation. We redesign the �-block mutation such that
a sequence of not necessarily adjacent positions is sorted
according to the respective priority rule (see figure 3):

1) Select � different positions from the permutation string.
2) Apply the priority rule only among elements of the

selected positions. Not selected elements are not con-
sidered.

permutation-encoded genome

Fig. 3. Working principle of the priority mixture mutation operator. Random
positions all over the permutation string are selected and reordered according
to the given priority rule. Not selected positions are not considered during
reordering.

This results in a permutation string, for which a sub-
sequence of positions adheres to the selected priority rule.
Clearly, that arbitrary priority rules (like SPT, EDD, or even
more complex priorities based on multiple properties of the
considered elements) can be integrated into this generic oper-
ator concept.

In that sense, multiple instances of this operator (with dif-
ferent priority rules attached) can be applied to the population
of an evolutionary multi-objective algorithm. Following the
approach of Lang [20], we can construct mutation opera-
tors in favor of the considered objectives. For the problem
1||PC

j

, L
max

we may construct two operators with the SPT
and EDD priority rules attached, respectively. They produce
(at least partly) contradicting sub-sequences in the same per-
mutation string and lead to a (hopefully) mixture of priorities,
see figure 4.

Fig. 4. Schema of solution generation by applying the proposed priority
mixture mutation operator for two priority rules on a single permutation.

V. EXPERIMENTS AND RESULTS

In order to evaluate the properties and benefit of the
proposed priority mixture operator, we consider single and
parallel machine scheduling problems. Therefore, we generate
instances using a well defined process which is described in
section V-A. In section V-B we detail our setup and finally
present and discuss our results in section V-C.

A. Instances
Following [3], we create a benchmark set of 20 prob-

lem instances, 5 instances for each instance size n 2
{25, 50, 75, 100} with release and due dates based on a
configurable three-step instance generation process. Figure 6
illustrates some of the generated instances.

1) First, for each job, a uniformly randomly distributed
processing time p

j

2 {p
min

= 1, . . . , p
max

= 50} is
assigned.

2) In the second step, release dates are created: 50 % of
the instances get a zero release date, i. e., bn

2

c jobs
are available to the machine(s) from the beginning. The
remaining n� bn

2

c jobs get a release date r
j

, which is
a realization of a truncated exponential distributed ran-
dom variable R

j

⇠ TExp
�
1

�

, t = C1

max

� p
j

�
, where

C1

max

=

P
p
j

is the non-delay makespan on a single
machine, t is the truncation parameter, and � is the rate
parameter of the truncated exponential distribution. The
choice of this parameter ensures that P (R

j

 C1

max

) =

1. Thus, with probability 1 the release date is sampled
before C1

max

. Additionally, due to the nature of the
(truncated) exponential distribution) earlier release dates
are more likely than late ones.

3) Finally, due dates are assigned: First a factor f
j

is sam-
pled uniformly at random from a U(3, 10) distribution.
Next, due dates d

j

are sampled from a truncated normal
distribution T N (µ

j

,�2

j

, a
j

). Here, µ
j

= r
j

+f
j

·p
j

is the
mean, �

j

= (f
j

� 1)p
j

/3 is the standard deviation and
a
j

= r
j

+ p
j

is the left-hand truncation for the Normal
distribution (see Figure 5). The choice of �

j

ensures, that
with probability ⇡ 99.7% the due date deviates from its
mean by at most 3�

j

, since

P (|D
j

� µ
j

| 3�
j

) ⇡ 0.99.

The sampled factor f
j

decides on the variance of the
distribution, i. e., higher values lead to higher variance
and thus, a higher probability for later due dates. The
left-truncation of the due dates finally assures, that d

j

�
r
j

+ p
j

holds, i. e., that each job can be finished.

t
rj+pj µj=rj+f ·pj

Fig. 5. Visualization of the density function of the truncated Normal
distribution used to sample due dates in the instance generation process.

B. Experimental Setup
We apply the evolutionary multi-objective algorithm NSGA-

II 10 times and for 2000 generations for each considered
problem2. As problems we consider the simple single objec-

2Additionally, we examined the SMS-EMOA algorithm. Since no signif-
icant difference was was observed we limit our experimental evaluation to
NSGA-II

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 03,2022 at 14:54:59 UTC from IEEE Xplore. Restrictions apply.

0

200

400

600

800

0 5 10 15 20 25
Job

Ti
m
e

0

500

1000

1500

0 10 20 30 40 50
Job

Ti
m
e

0

500

1000

1500

2000

0 20 40 60
Job

Ti
m
e

0

1000

2000

3000

0 25 50 75 100
Job

Ti
m
e

Fig. 6. Examplary instances with n = 25, 50, 75, 100 jobs (from top to
bottom). The dark boxes show the time between release and due date, while
the red boxes indicate the processing time. The dashed line highlights the
makespan of the instance.

tive problem 1||PC
j

, L
max

, the NP-hard parallel machine
problem P3||PC

j

, L
max

, and the three-objective problem
1|r

j

|PC
j

, L
max

,
P

U
j

. For each problem we generate 5
instances for sizes n 2 {25, 50, 75, 100} (see Section V-C).

The parental and offspring population sizes are set to the
number of jobs of the problem instance at hand. Defaults were
used for all remaining algorithm parameters. As we especially
investigate the effects of mutation operators, crossover opera-
tors are generally deactivated during our experiments. For the
applied �-block mutation, � is set to 0.1 · n with n being the
instance size. The subsequence length for the mixture operator

is bounded by 2 · 0.1 · n.
All experiments were conducted using the statistical pro-

gramming language R on a parallel linux computer cluster,
which consists of 3528 processor cores in total. The utilized
compute nodes are 2,6 GHz machines with 2 hexacore Intel
Westmere processors, 12 cores per node, and 2 GB main
memory per core. The used NSGA-II implementation can be
found in the R package ecr [23].

C. Results
In a first step, we investigate the isolated effects of priority-

rule integration via a single operator. This is done by ei-
ther applying the mixture mutation operator (denoted as
randomPosition) or the �-block mutation (denoted as
sigmaInterval) with only SPT priority or EDD priority
included.

●

●●

●

●●
● ●

● ●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

● ●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

● ●
●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●●
● ●

● ●

●●

●

●

●
●

●
●

●

●

●
●
●

●

●

●

●●

●

●●
● ●

●●
●

●

●

●
●
●

●

●

●
●

●

●

●
●

●

●

●●

●

● ●

● ●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●
● ●

● ●

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●

●●

●

● ●

● ●
●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●●
● ●

● ●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

● ●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●
● ●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●
● ●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●
●●

●

●

●

●
● ●

● ●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●●

●

●●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●●
●

●●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●
● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

● ●
●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●
● ●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

● ●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●●

●
●

●

●
●
●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●●

●

●

●
● ●

●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●●

●

● ●
●●

●

●

●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●
●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●

● ●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

● ●

●●

●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●● ●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

● ●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●●

●

●●

●
●●●●
●

●

●
●

●

●

●
● ●

●

●

●
● ●● ●

●

●
● ●

●

●
● ●

●

●
● ●

●

●

● ●
●●

●●
●●

●
●

●●
●●

●●
●

●
●

●
●

●
●●

●
●

●●
●

●●

●

●
●
●
●
●●

●

●
●
●●

●

●

●
●●

●

●

●
●●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●
●●

●
●

●

●

●

●

●
● ●
●

●
●

●

●

●

●●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●●

●●

●
●●

●●●
●

●

●●
●●
●

●

●

●

●

●●

●

● ●

● ●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●●

●

●●

●
● ●

●

●●
●

●

●●
●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●●

●●
●●

●

●

●

●
● ●●

●
●

●

●

●

●
●

●

●

●●

●

● ●

● ●
●●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●
● ●
●●●

●
●

●

●● ●
●

●

●

●

●●●
●

●
● ●

●●

●

●●●●
●

●
●
●
●

●
●●

●
●

●

●

●●
●
●
●

●

●

●

●●
●
●●●
●

●
●●
●

●

●
●

●

●
●●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●

●●

●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●●

●

●

●●

●●

●●

●

●

●

●

●●

●●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●
●

●

●●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●●

●●

●●

●●

●●

●●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●●

●
●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●●

●

● ●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●● ●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

● ●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●●

●

sigmaIntervalBoth sigmaIntervalEDD sigmaIntervalSPT swap

combinedBoth randomPositionsBoth randomPositionsEDD randomPositionsSPT

52
50

55
00

57
50

60
00

62
50

52
50

55
00

57
50

60
00

62
50

52
50

55
00

57
50

60
00

62
50

52
50

55
00

57
50

60
00

62
50

∑Cj

L m
ax

●

●●

●

●●
●●

●
●

●● ●●

●●

●●
●●

●●
●●●●
●●
●●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●

● ●
●●●●

●●
●●

●●

●●

●
●
●
●

●●

●

●

●

●

●●

●
●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●
●●

● ● ●●

●●
●●

●●●●
●

●

●●

●

●●
●
●

●●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●
●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●
●

●●

●

● ●
●●

● ●●● ●●
●●

●●●●●●

●●

●●

●●
●●

●

●

●
●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●
●

●●

●

●●
●

●

●●●
●●

●●

●●
●●
●●

●

●●●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●●

●
●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

● ●
●●

●●
●●●● ●●

●●
●

●●

●●●

●

●●

●●●

●●
●●

●

●
●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●● ●●●

●●

●●

●●●
●●●
●●
●●
●●●●
●
●

●

●

●●

●●
●
●

●

●

●

●
●

●
●●

●

●●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●
● ●

●●●
●●●

●
●●

●
●

●

●
●

●
●●●●

●●

●●
●●
●

●

●
●

●●

●
●

●
●
●●●●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●
●

●

●

●●

●

●
●

●●

●

● ●
● ●

● ●

●●

●●●
●●

●●

●●
●●

●●●●
●●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●
●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●
●

●

●●

●

●●

●

● ●● ●
●●

●
●

●●●●
●●●

●●●●
●●

●●
●
●
●
●●
●

●

●

●

●

●

●

●

●
●
●●
●
●

●

●
●

●

●

●
●●

●

●

●
●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●● ●
● ● ●●

●● ●●

●●
●●

●●
●
●
●
●
●●

●

●● ●

●

●●

●●

●●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●● ●● ●
●● ● ●

●●

●

●

●●●

●
●●
●
●

●

●

●

●●

●
●
●
●●●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●●
● ●

●

●●●● ●●
●●
●●●
●
●●
●
●●

●
●●
●●●●

●●

●●

●

●
●

●
●

●

●
●

●

●

●

●●●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●●

●

●● ● ●
● ●

● ●
●●

●●

●●
●●

●●
●●

●●●●

●●

●●

●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

● ●●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●●

●●●●
●●

●

●●

●
●●

●●
●●
●●
●●

●●

●●
●●●
●●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●● ●
●

●●●●●● ●●

●

●●
●●
●

●●

●●

●

●●

●

●

●●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

● ●●● ● ●
●●

●
●●
●

●●
●●

●●

●●

●●
●●

●●●
●
●●
●

●

●
●

●

●

●

●●

●
●

●

●●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●
●●

●

●

●

●

●

●●

●●

●●

●

●●

●

● ●
●●

●●●●
●●

●●●● ●●

●●

●●

●●

●●
●

●

●
●●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●● ●
●●

●●
●●

●●

●●
●●

●●

●●
●●

●
●
●
●
●

●●●
●●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●●● ●
●●

●●

●●●●

●●
●●

●●

●●●●

●●

●●

●●

●●

●●

●
●
●

●

●

●●

●

●

●

● ●

●●

●

●

●

●

●●

●●
●

●
●

●
●●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●●

●

●●

●

●
●

●
●● ●

●●

●●●●
●●

●
●

●

●
●
●●●

●

●
●
●
●
●

●

●
●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●●●
●●

●

●●●● ●●
●●● ●

●●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●●●●
●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●
●

●

●●
●

●

●

●

●
●

●

●

●●

●

●
●

●●
●●●

●

●●
●●●●●●

●●

●●●●
●●

●

●

●

●

●●●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●●

●

●

●
●

●

●
●
●
●

●●

●

●

●

●

●

●

●
●

●

●●●

●●●
●●

●

●
●●●●●

●●●●

●

●

●

●

●●

●
●

●
●

●●
●

●

●

●

●●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●●

●

●

●

●●

●

●
●
●

●

●

●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●●
●●

●
●●●

●
●

●
●●

●●

●
●
●
●

●●

●

●●

●

●●

●

●●
●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

● ●
●●

●●

●

●●
●●●●●●●
●

●
●●

●●

●●

●

●●●●

●●
●●●●

●

●

●●●

●

●
●

●

●

●

●

●
●

●
●
●

●
●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●

●

●

●

●
●●●

●

●

●

●

●●
●●

●

●
●
●
●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●●
●
●●●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●
●

●

●
●
●

●●
●
●

●

●●

●

●

●

●

●

●
●
●
●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●
●

●

●●

●

● ●
●●●●

●
●

●●
●●●●

●●●

●●

●●

●●

●●
●●●

●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●● ●●●
●

● ●
●

●●

●●

●●
●●
●●

●

●●

●
●

●●●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●
●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●●

●●

●●●

●

●

●
●

●
●

●
●●
●

●

●

●●

●

●
●
●●●●
●
●●●

●

●
●

●
●
●

●●

●

●

●●

●

●

●

●

●
●●
●
●

●

●

●
●●
●
●●

●

●
●●
●●
●●

●●

●

●

●

●

●
●●
●
●

●

●

●
●●
●
●

●

●
●
●●
●

●

●

●

●

●

●

●

●
●●●

●

●

●●●●●

●●

●●
●

●
●●

●●
●
●

●

●
●

●
●

●●

●

●
●

●

●

●●
●●

●

●

●

●

●●
●
●●

●
●●

●
● ●●

●
●

●

●●
●●

●

●

●

●

●●
●
●●

●
●●

●
● ●●

●
●

●

●●
●●

●

●

●

●

●●
●
●

●

●●

●

●●
●●●●

●
●●
●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●●

●
●

●

●

●●

●
●
●●

●

●

●
●
●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●
●

●
●
●

●

●

●

●●

●●●
●●

●●●●●

●●●●
●●
●

●
●

●

●●

●●
●●●●

●●●●●
●
●
●

●

●
●
●

●
●

●●

●
●●●●

●●●
●
●
●

●

●
●
●

●
●

●●

●
●●●●

●●●
●
●

●

●●
●
●

●
●

●●

●
●●●●

●●●
●
●
●

●

●
●
●

●

●

●

●

●●●●●●●●
●●●

●

●●

●●

●
●

●●
●●
●●●●●
●●●

●●
●
●

●

●

●●●
●●

●

●
●

●●
●●●

●●
●
●

●

●
●●●
●●

●

●
●

●●
●●●

●●
●
●

●

●

●●●
●●

●

●
●

●●
●●●

●●
●
●

●

●
●●●

●

●

●

●
●●
●

●

●●

●●●●

●●
●

●

●

●
●●
●

●
●●

●●
●

●

●

●

●
●●

●

●●
●

●●

●

●

●

●●
●
●

●●●
●
●●

●

●

●

●

●

●

●
●●

●

●

●

●●●

●

●●

●
●●

●●

●

●

●

●

●●●
●
●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

● ●●● ●●

●●

●●

●

●

●

●

●
●
●

●●

●

●
●●

●●

●

● ●
●

●
●
●

●●

●

●
●

●

●

●● ●
●

●
●
●

●●

●

●
●

●●

●

● ●
●

●
●
●

●●

●

●
●

●

●

●● ●
●

●
●
●

●●

●

●
●

●●

●

● ●
●

●
●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●
●●

●

●
●●●
●

●●

●
●●

●
●

●●

●●
●

●

●

●
●
●

●

●
●●

●

●

●

●●
●

●

●
●

●
●
●

●
●
●

●

●
●●

●

●

●

●●
●

●

●
●

●
●
●

●
●
●

●

●
●●

●

●

●

●●
●

●

●
●

●
●
●

●
●
●

●

●
●●

●

●

●

●●
●

●

●●

●● ●●
●●
●●
●
●●●●●
●
●● ●

●

●
●
●●●
●
●● ●

●

●
●
●●●
●
●● ●

●

●
●
●●●
●
●●

●

●●
●
●●●
●
●●

●

●●
●
●●●
●
●● ●

●

●
●
●●●
●
●● ●

●

●
●
●●●
●
●●

●

●●
●
●●●
●
●●

●

●●

●

●●

●●

●●

●●
●●

●●

●

●●

●

●
●●

●
●
●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

● ●
●

●

●●

●● ●●●
● ●

●●●●●●●
●●●●

●

●

●
●
●

●●●

●●

●
●

●●

●●●●●●
●
●
●●
●●●●●●

●●●●●
●

●●
●●●

●●

●
●
●
●●
●●●●●●

●●●●●
●

●●
●●●

●●

●
●
●
●●
●●●●●

●● ●

●●

●●●
● ●●●

●●●●●
●●

●●● ●● ●●●

●
●

●

●
●

●●●●●

●

●●●
●

●
●

●
●

●
●●●

●●
●●●●

●●

●

●
●

●●●
●

●●●●

●

●
●●

●
●●●●

●●
●●●●

●●

●

●
●

●●●
●

●●●●

●

●
●●

●
●

●

●

●

● ●●●● ●●●● ●●

●●●●

●●

●●

●●

●
●
●
●
●

●
●
●

●●
●●

●
●
●
●●

●

●
●

●

●●
●●

●

●

●●● ●●●

●●●
●

●

●
●
●
●●

●

●

●

●●
●●

●

●●●● ●●●

●●●
●

●

●
●
●
●●

●

●

●

●●
●●

●

●

●

●

●●●
●●

●●●●●● ●●●●

●
●●

●
●

●●
●

●
●●●●
●

●●●●●●
●●

●

●
●●●●
●

●●●●●●
●●

●

●
●●●●
●

●●●●●●
●●

●

●
●●●●

●

●

●●●●●
●●

●

●
●●●●
●

●●●●●●
●

●

●●

●

● ●●●●● ●●●●●

●●

●●●●

●●●●
●●

●●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●
●●●●●

●

●

●

●● ●●●●●

●●

●

●

●

●

●

●

●

●●

●
●●

●
●●

●●●
●● ●●●●●●

●●
●●

●
●●●● ●

●
●

● ●●●
●●

●
●●●

●
●●

● ●●●
●●

●
●●●

●
●●

● ●●●
●●

●
●●● ●

●
●

● ●●●
●●

●
●●● ●

●
●

● ●●●
●●

●
●●● ●

●
●

● ●●●
●●

●
●

●
●●●●● ●● ●●●●●●●

●●●●
●●● ● ●●●

●●
●

● ●● ● ●●●
●●

●
● ●● ● ●●●
●●●

●●● ● ●●●
●●●

●●● ● ●●●
●●●

●●● ● ●●●
●●●

●●● ● ●●●
●●●

●●● ● ●●●
●●

●

●

●

●●●●●●●● ●●●●●●●●●● ●●
●

●●
●

●●

●●●●
●
●●●●●●
●●●●●●

●

●

●●●●●● ●●●●

●
●●●●
●●●●●●
●

●●●●●●● ●●●●

●
●●●●
●●●●●●

●

●

●●●●●●
●

●

●

●●● ● ●
●●

●●
●●●●
●

●● ●●●

●●
●● ●

●●●●●●●

●

●

●
●● ●●●
●● ●

●●●●●●

●

●

●
●● ●●●
●● ●

●●●●●●●

●●
●● ●●●
●● ●

●●●●●●●

●●
●● ●●●
●● ●

●●●●
●

●●

●
● ● ● ●●● ●●●●●●●
●●

●●●●

●●

●

●●●●
●
●

●
●●●
●●
●

●●

●● ●●●● ●●●
●●
●
●
●●
●●
●

●●

●● ●●●● ●●●
●●●
●●
●●
●

●●

●● ●●●● ●●●
●●●
●●
●●
●

●●

●

●●●

●

●

●

●●
●●
●●

●

●

●
●●

●

●

●
●●
●

●
●
●●

●

●

●
●●
●

●
●
●●
●

●
●
●●
●

●
●
●●
●

●
●
●●

●

●

●
●●
●

●
●
●●
●

●
●
●●

●

●

●
●●
●

●
●
●●

●

●

●
●●
●

●
●
●●

●

●

●
●●
●

●
●
●●

●

●

●
●●
●●
●

●

●

●
●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●●

●●

●
●

●
●
●
●

●
●

●

●●
●
●
●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●
●

●
●
●
●

●

●
●
●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●
●

●

●
●

●

●
●
●

●

●

●
●
●

●
●
●
●

●

●
●

●

●
●
●
●

●

●
●

●

●●

●

●
●

●
●●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●

●

●●

●

●
●●
●

●

●

●
●

●

●
●
●

●

●

●
●

●

●
●
●
●

●
●
●
●

●

●
●

●

●

●
●

●

●
●
●
●

●
●
●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●
●
●

●
●
●

●

●
●
●
●

●
●
●
●

●

●
●
●

●
●
●
●

●

●
●

●

●

●
●
●

●

●
●

●

●
●
●

●

●

●
●
●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●

●
●●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●
●
●

●

●●

●

●
●
●

●
●
●●●●

●

●
●●●
●●

●

●

●●

●

●
●●
●

●●

●●●

●
●
●
●
●

●

●

●

●●
●
●

●
●
●

●

●

●

●●
●
●

●
●
●

●

●

●

●●●

●
●●●
●●

●●●●

●
●●
●

●

●

●

●●
●
●

●
●
●

●

●

●

●●●

●
●●
●

●

●

●●

●

●
●
●

●
●
●●

●

●●
●
●

●

●
●

●
●

●

●
●●●●
●
●
●
●

●●●
●
●

●

●
●
●

●●
●
●
●

●

●

●●

●

●
●

●
●
●

●●
●
●
●

●

●

●●●

●
●

●
●
●

●●
●
●
●
●

●●●●

●
●

●
●
●

●●
●
●
●

●

●

●●●

●
●

●

●
●

●

●

●

●●
●●
●●
●●●
●
●
●
●

●

●

●●●
●●●●

●●●
●
●●
●

●

●

●●
●
●
●
●

●

●

●●●
●●
●
●

●●●●
●●
●

●

●

●●
●
●●
●

●

●

●●●
●●●●

●●●
●
●
●
●
●

●●●●
●●
●
●

●●●
●
●●
●●

●●●
●

●●

●

●
●●●
●

●●

●

●●
●
●

●

●
●●
●
●
●

●
●●●●
●●

●

●

●●●

●
●

●
●
●

●●●
●●

●

●

●●●

●
●

●

●
●

●●●
●●

●

●

●●
●
●

●
●

●
●

●●●
●●

●

●●●

●

●
●

●
●
●

●●●
●●

●

●●●
●
●

●
●
●
●

●

●●

●

●
●
●

●
●
●●

●

●●●
●
●
●

●

●
●

●
●
●●●
●●

●

●

●●

●

●
●

●
●
●

●●
●●

●

●

●●

●
●
●

●
●
●

●●
●●

●

●

●●
●
●

●

●
●
●

●●
●●
●

●●●
●
●

●
●

●
●

●●
●●
●

●●●●

●
●

●
●
●

●●
●●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●
●
●

●●

●

●
●
●

●
●
●

●
●

●
●

●

●
●●●

●

●
●

●
●●
●
●
●
●
●●●●
●
●

●

●●
●
●
●●●●●●

●●●
●
●

●

●
●
●

●
●●●
●

●●●
●

●

●
●●
●
●
●●●●●

●

●

●●●
●
●
●

●

●

●

●

●

●

●
●●

●
●
●●

●
●

●●●

●
●

●
●●

●
●

●

●

●
●●●●
●●

●

●●●
●
●

●
●
●

●
●

●●●
●●

●

●

●●

●
●
●

●

●
●

●
●●●
●●

●

●

●●

●

●
●

●

●

●

●

●●●
●●

●

●

●●
●
●

●

●
●

●

●

●●●
●●

●

●

●●
●

●

●

●

●
●
●

●
●
●●

●

●●●

●
●

●
●●

●

●
●

●

●●
●●●●
●●

●

●●●
●
●

●
●

●

●

●

●●●
●●

●

●●●
●
●

●

●
●

●

●

●●●
●●

●

●●●●

●
●

●
●

●
●

●●●
●●

●

●

●●

●

●
●

●
●

●
●

●●●
●●

●

●

●●
●

●●

●

●
●●
●

●●
●●●

●
●
●

●
●
●

●

●

●

●●

●
●
●●
●
●●

●●●
●
●

●●
●
●●

●●●●
●
●●
●

●

●

●

●●●

●
●●●
●●

●●●●

●
●●●
●●

●●●●

●
●●
●

●

●

●

●●●
●
●
●
●
●●

●●●

●
●
●
●
●

●

●

●

●

●
●
●
●
●
●●●●●
●●
●
●

●●●●
●●
●

●

●

●●●
●●
●

●

●

●●
●
●●
●

●

●

●●●
●●●

●

●

●●
●
●
●
●

●

●

●●●
●●
●

●

●

●●●
●●●

●

●

●●●
●●●●

●●●
●
●
●
●
●

●●●●
●●●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●●

●

●
●●
●

●

●

●
●

●

●●

●●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●
●

●

●

●●

●

●

●
●
●●
●

●
●

●

●

●
●

●

●

●●
●

●
●

●

●

●
●
●

●
●

●

●
●●●

●

●

●
●●●●●●

●

●
●

●

●

●●
●

●

●

●

●

●●

●

●

●●●

●

●
●

●●

●●

●
●

●

●

●

●

●
●

●
●

●
●●
●●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●●

●●●

●●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●
●

●

●

●●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●●●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●●

●

●

●
●

●

●
●

●
●
●

●

●

●

●●

●

●

●

●

●
●
●
●●
●
●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●●

●

●●

●
●

●

●●

●

●

sigmaIntervalBoth sigmaIntervalEDD sigmaIntervalSPT swap

combinedBoth randomPositionsBoth randomPositionsEDD randomPositionsSPT

85
00
0
90
00
0
95
00
0

10
00
00

10
50
00

85
00
0
90
00
0
95
00
0

10
00
00

10
50
00

85
00
0
90
00
0
95
00
0

10
00
00

10
50
00

85
00
0
90
00
0
95
00
0

10
00
00

10
50
00

∑Cj

L m
ax

Fig. 7. Objective space for all considered mutation operators for an instance
with n = 25 jobs (top) and n = 100 jobs (bottom) respectively for
1||

P
Cj , Lmax

. The true Pareto-front (big gray points) points is visualized
besides the union of approximations from all 10 runs on the instance (small
black points).

Figures 7 and 8 show the results denoted as
randomPositionEDD, randomPositionSPT,
sigmaIntervalEDD, and sigmaIntervalSPT for
1||PC

j

, L
max

as well as P3||PC
j

, L
max

and for instances
comprising 25 or 100 jobs. Here we find the expected
behavior: positions of solutions on the Pareto-front reflect the
integrated priority rules. For an integrated EDD rule, both

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 03,2022 at 14:54:59 UTC from IEEE Xplore. Restrictions apply.

operators force solutions to small L
max

values (i. e., the right
tail of the Pareto-front), while SPT-biased mutation forces the
solutions to small

P
C

j

solutions (i. e., the left tail of the
Pareto-front).
Result 1: The mutation operators (�-block and mixture muta-
tion) allow the integration of priority rules and are able to
force solutions towards the desired area of the Pareto-front.

sigmaIntervalBoth sigmaIntervalEDD sigmaIntervalSPT swap

combinedBoth randomPositionsBoth randomPositionsEDD randomPositionsSPT

25
00
00

30
00
00

35
00
00

25
00
00

30
00
00

35
00
00

25
00
00

30
00
00

35
00
00

25
00
00

30
00
00

35
00
00

∑Cj

L m
ax

Fig. 8. Pareto-approximations for all considered mutation operators and
combinations of operators for an instance with n = 100 jobs and
P3||

P
Cj , Lmax

.

A closer look to the results from applying mutation op-
erators separately shows, that the �-block mutation tends to
produce especially good solutions around the most extremal
positions of the Pareto-front. The mixture operator, however,
also allows solutions which cover larger areas of the favored
Pareto-front area. This is especially true for the EDD-biased
operator. Certainly, the property of generating consecutive
blocks of priority-ordered jobs in the �-block mutation leads—
under selection pressure—to the emergence of almost com-
pletely EDD- or SPT-ordered genomes. In contrast, the mixture
operator, allows largely priority-compliant sequences which
are nevertheless interrupted by single jobs or small blocks.

In a second step, we apply each type of operator for SPT and
EDD at the same time for all three problems. In each mutation
step of NSGA-II, simply one of the mutation operators is
selected with equal probability (sigmaIntervalBoth and
randomPositionsSPT respectively). Figures 7 and 8
also show the aggregated results of all runs for the one-
machine and three-machines scenarios. All experiments yield
a good coverage of the whole Pareto-front. Additionally, we
combine both types of mutation operators and denote the
plots with combinedBoth in our figures. Interestingly, a
detailed analysis of the results via the Hypervolume en-
closed by the solution fronts shows, that this combination
of �-block mutation and mixture mutation leads in most
cases to best results. However, suprisingly the results for
sigmaIntervalBoth are more effective than the achieved
results for randomPositionsSPT. We would have ex-
pected the reverse case according to the observations of
the similarity analysis (see e. g., Fig. 2). Our guess is that

the repeated application of �-block mutation with different
sampled � values also leads to a disjoint sequence ordering as
performed by the mixture operator.

Figure 9 shows the Hypervolume results for all 100-job-
instances for all three problems and for all 10 runs comparing
the performance of pure swap mutation, the application of both
mutation operator types separately as well as the combined
application of both types. We find, that the mixture operator
alone performs not as stable as the �-block operator. When
investigating the single solution fronts, we find that solutions
under the mixture operator tend to the middle of the efficient
front and miss the extremal areas of the Pareto-front.

TABLE I
AVERAGE HYPERVOLUME RANKS. THE DOMINATED HYPERVOLUME WAS

RANKED IN EACH REPLICATION AND AVERAGED OVER REPLICATIONS AND
PROBLEM INSTANCES.

Problem Mutator Avg. HV rank

1||
P

Cj , Lmax

combinedBoth 1.43 (1)
randomPositionsBoth 2.88 (3)
sigmaIntervalBoth 1.77 (2)
swap 3.92 (4)

1|r j|
P

Cj , Lmax

,
P

Uj

combinedBoth 1.83 (1)
randomPositionsBoth 2.98 (3)
sigmaIntervalBoth 3.17 (4)
swap 2.02 (2)

P
3

||
P

Cj , Lmax

combinedBoth 1.60 (1)
randomPositionsBoth 2.75 (3)
sigmaIntervalBoth 2.12 (2)
swap 3.52 (4)

However, table I reveals that the combined application of
the mixture operator and the �-block operator yields the best
average dominated hypervolume in all considered scenarios.
For the problems 1||PC

j

, L
max

and P
3

||PC
j

, L
max

the
exclusive usage of the mixture operator or the �-block operator
are ranked second and third, respectively. The simple swap

TABLE II
BEST MUTATION OPERATORS BASED ON MEDIAN DOMINATED

HYPERVOLUME FOR EACH COMBINATION OF INSTANCE AND SCHEDULING
PROBLEM.

1||
P

Cj, Lmax

1|rj |
P

Cj, Lmax

,
P

Uj P
3

||
P

Cj, Lmax

n
=

2

sigmaIntervalBoth swap combinedBoth
combinedBoth swap combinedBoth
combinedBoth swap combinedBoth
combinedBoth swap combinedBoth
combinedBoth swap combinedBoth

n
=

5
0

combinedBoth swap combinedBoth
combinedBoth swap combinedBoth
combinedBoth swap combinedBoth
combinedBoth swap combinedBoth
combinedBoth combinedBoth combinedBoth

n
=

7
5

combinedBoth combinedBoth combinedBoth
sigmaIntervalBoth combinedBoth combinedBoth
sigmaIntervalBoth combinedBoth combinedBoth
sigmaIntervalBoth combinedBoth combinedBoth
combinedBoth swap sigmaIntervalBoth

n
=

1
0
0

combinedBoth combinedBoth combinedBoth
combinedBoth combinedBoth sigmaIntervalBoth
combinedBoth combinedBoth sigmaIntervalBoth
sigmaIntervalBoth combinedBoth sigmaIntervalBoth
sigmaIntervalBoth combinedBoth combinedBoth

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 03,2022 at 14:54:59 UTC from IEEE Xplore. Restrictions apply.

●●

●●

●●

●●●

●●
●● ●●

●●

●●

●●

●●
●●

●●

●●

●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●

●●

●●

●●

instance−100−1.csv instance−100−2.csv instance−100−3.csv instance−100−4.csv instance−100−5.csv

1||sum
C

j,Lm
ax

1|r_j|sum
C

j,Lm
ax,sum

U
j

P3||sum
C

j,Lm
ax

co
mbin

ed
Both

ran
do

mPos
itio

ns
Both

sig
maIn

ter
va

lBoth sw
ap

co
mbin

ed
Both

ran
do

mPos
itio

ns
Both

sig
maIn

ter
va

lBoth sw
ap

co
mbin

ed
Both

ran
do

mPos
itio

ns
Both

sig
maIn

ter
va

lBoth sw
ap

co
mbin

ed
Both

ran
do

mPos
itio

ns
Both

sig
maIn

ter
va

lBoth sw
ap

co
mbin

ed
Both

ran
do

mPos
itio

ns
Both

sig
maIn

ter
va

lBoth sw
ap

Mutation operator

D
om

in
at

ed
 H

yp
er

vo
lu

m
e

Fig. 9. Distribution of dominated Hypervolume over all 10 runs of the EA for all instances with n = 100 jobs split up by the considered scheduling problem
and mutation operator. The dashed line in the results for 1||

P
Cj , Lmax

indicates the Hypervolume of the true Pareto-front.

mutation is ranked worse for both problems. However, for
the problem 1|r

j

|PC
j

, L
max

,
P

U
j

swap mutation is second
best on average. Here, only the combination of the priority-
rule operators is slightly better. Table II gives a less aggregated
summary of the results (median hypervolume measure). We
see that the mixture operator and the �-block operator leads
to best performance with respect to the median Hypervolume
measure in 2/3 of all cases. Additionally, we find that the
swap operator yields most beneficial results for small and
medium size instances of the three-objective problem. This can
be attributed to a probably missing priority rule which respects
the third objective

P
U
j

and the release date constraint.
For larger instances, we speculate that this effect is partly
compensated by superior solution properties for the

P
C

j

and
L
max

objectives.
Result 2: The mixture operator alone is not superior to the �-
block operator. However, the combined application of mixture
mutation and �-block mutation leads to superior solution
quality in most cases.

VI. CONCLUSION

In this paper, we discussed and highlighted the problem of
expert knowledge integration in the scheduling domain and
specifically focused on the integration of common and usually
well founded priority rules from single-objective optimization.
We exemplarily analyzed the emergence and properties of
Pareto-optimal solutions utilizing a polynomial time solver for
a single machine problem. The results lead us to proposing

a mixture mutation operator, that allows the construction of
priority-ordered (not necessarily consecutive) sub-sequences in
a permutation encoded genome. We experimentally evaluated
this operator inside NSGA-II together with standard swap
mutation and the so-called �-block mutation from literature
and were able to show, that the operator effectively supports
the solution generation also for more complex problems.
Further, we (1) show, that the inclusion of expert knowledge
via mutation operators is possible and (2) extended the set of
useful operators in this domain.

Future research should consider further scheduling problems
and a more comprehensive set of priority rules. Also, the
analysis of optimal trade-off solutions may be extended to
specifically analyze the parametrization of the operators (e.g.,
how to set the � for the block operator).

REFERENCES

[1] M. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd ed.
Springer, 2009.

[2] P.-F. Dutot, K. Rzadca, E. Saule, and D. Trystram, Introduction to
Scheduling, 1st ed. CRC Press, 2010, ch. Multi-Objective Scheduling,
pp. 219–251.

[3] C. Grimme, J. Lepping, and U. Schwiegelshohn, “Multi-criteria schedul-
ing: an agent-based approach for expert knowledge integration,” Journal
of Scheduling, vol. 16, no. 4, pp. 369–383, 2013.

[4] K. Miettinen, Nonlinear Multiobjective Optimization, ser. Kluwer’s
International Series in Operations Research & Management Science.
Boston: Kluwer Academic Publishers, 1999.

[5] R. L. Graham, E. L. Lawer, J. K. Lenstra, and A. H. G. R. Kan,
“Optimization and Approximation in Deterministic Sequencing and
Scheduling: A Survey,” Annals of Discrete Mathematics, vol. 5, pp. 287–
326, 1979.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 03,2022 at 14:54:59 UTC from IEEE Xplore. Restrictions apply.

[6] W. E. Smith, “Various Optimizers for Single-stage Production,” Naval
Research Logistics Quarterly, vol. 3, pp. 59–66, 1956.

[7] J. R. Jackson, “Scheduling a Production Line to Minimze Maximum
Tardiness,” University of California, Los Angeles, Management Science
Research Project, Research Report 43, 1955.

[8] J. M. Moore, “An n Job, One Machine Sequencing Algorithm for
Minimizing the Number of Late Jobs,” Management Science, vol. 15,
pp. 102–109, 1968.

[9] G. A. Süer, E. Báez, and Z. Czajkiewicz, “Minimizing the Number of
Tardy Jobs in Identical Machine Scheduling,” Computers and Industrial
Engineering, vol. 25, no. 1–4, pp. 243–246, 1993.

[10] R. Haupt, “A Survey of Priority Rule-Based Scheduling,” OR Spectrum,
vol. 11, no. 1, pp. 3–16, March 1989.

[11] L. N. van Wassenhove and F. Gelders, “Solving a Bicriterion Scheduling
Problem,” European Journal of Operational Research, vol. 2, no. 4, pp.
281–290, 1980.

[12] C.-L. Chen and R. L. Bulfin, “Complexity of single machine multi-
criteria scheduling problems,” European Journal of Operational Re-
search, vol. 70, pp. 115–125, 1993.

[13] H. Hoogeveen, “Multicriteria scheduling,” European Journal of Opera-
tional Research, vol. 167, no. 3, pp. 592–623, December 2005.

[14] H.-P. Schwefel, Evolution and Optimum Seeking, 1st ed. Wiley, 1995.
[15] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist

Multiobjective Genetic Algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[16] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization,” in
Evolutionary Methods for Design, Optimisation and Control with Ap-
plication to Industrial Problems (EUROGEN 2001), K. Giannakoglou
et al., Eds. International Center for Numerical Methods in Engineering
(CIMNE), 2002, pp. 95–100.

[17] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective
selection based on dominated hypervolume,” European Journal
of Operational Research, vol. 181, no. 3, pp. 1653 – 1669,
2007. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0377221706005443

[18] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs, 3rd ed. Berlin: Springer, 1999.

[19] A. A. Pereira, H. Barbosa, and H. Bernardino, “Predator-prey techniques
for solving multiobjective scheduling problems for unrelated parallel
machines,” in Proceedings of the 9th International Conference on
Evolutionary Multi-Criterion Optimization, ser. LNCS, T. et al., Ed.,
vol. 10173, 2017, pp. 471–485.

[20] M. Lang and C. Grimme, “Towards standardized and seamless integra-
tion of expert knowledge into multi-objective evolutionary optimization
algorithms,” in Proceedings of the 9th International Conference on
Evolutionary Multi-Criterion Optimization, ser. LNCS, T. et al., Ed.,
vol. 10173, 2017, pp. 366–380.

[21] K. Deb, J. Sundar, N. Udaya Bhaskara Rao, and S. Chaudhuri, “Refer-
ence point based multi-objective optimization using evolutionary algo-
rithms,” International Journal of Computational Intelligence Research,
vol. 2, no. 3, pp. 273–286, 2006.

[22] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712–731, 2007.

[23] J. Bossek, “ecr 2.0: A Modular Framework for Evolutionary Computa-
tion in R,” in Proceedings of the Genetic and Evolutionary Computation
Conference Companion, ser. GECCO ’17, 2017, pp. 1187–1193.

Authorized licensed use limited to: Universitaetsbibliothek der RWTH Aachen. Downloaded on August 03,2022 at 14:54:59 UTC from IEEE Xplore. Restrictions apply.

