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Abstract. Despite the intrinsic hardness of the Traveling Salesperson
Problem (TSP) heuristic solvers, e.g., LKH+restart and EAX+restart,
are remarkably successful in generating satisfactory or even optimal solu-
tions. However, the reasons for their success are not yet fully under-
stood. Recent approaches take an analytical viewpoint and try to iden-
tify instance features, which make an instance hard or easy to solve. We
contribute to this area by generating instance sets for couples of TSP
algorithms A and B by maximizing/minimizing their performance dif-
ference in order to generate instances which are easier to solve for one
solver and much harder to solve for the other. This instance set offers
the potential to identify key features which allow to distinguish between
the problem hardness classes of both algorithms.
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1 Introduction

The traveling salesperson problem (TSP) is one of the most famous NP-hard
combinatorial optimization problems of highly practical relevance (logistics, cir-
cuit boards assembly, etc.). Given a set of N cities and positive distances dij
from city i to city j, 1 ≤ i, j ≤ N with i �= j, the task is to construct a roundtrip
tour of minimal total distance that visits each city exactly once and returns to
the origin.

We focus on the 2D Euclidean TSP which refers to points in the Euclidean
plane und thus results in a Euclidean distance matrix. Respective solvers can be
distinguished into two classes. For exact algorithms like Concorde [1] optimality
of the found solution after algorithm completion can be guaranteed. However,
the required runtime might be quite high, especially for large instances. State
of the art solvers in inexact TSP solving proved to be able to find solutions of
very high quality and simultaneously much faster. Those are therefore of crucial
interest, especially for efficient algorithm selection approaches [9].

In [8] we were able to show that per-instance algorithm selection between
LKH [6] and the recently introduced evolutionary algorithm EAX [13] together
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with specific restart variants as presented in [8] is very promising w.r.t. to
improving the state of the art in TSP solving.

Per-instance algorithm selection makes use of a comprehensive set of instance
features from the literature1 [7,12,15,16]. A crucial aspect is the identification
of features which are useful for determining the instance hardness for different
solvers. While much progress has been made in this respect, e.g. in [5] where
LKH behavior is related to the transition from highly structured, polynomially
solvable TSP instances to instances with increasingly random distributions of
nodes, this issue is not yet fully understood. This paper specifically aims at
improving the analysis of performance differences of the current state of the art
inexact TSP solvers LKH+restart and EAX+restart as well as their orignial
versions without restart mechanism. More specifically, we use an evolutionary
approach to evolve instances on which the solvers exhibit maximum performance
difference, i.e. which are easier to solve for one solver and harder for the other.
The used evolutionary algorithm, inspired by [16], was introduced in the context
of analysing problem hardness of the 2-opt heuristic in [11] and further adapted
in [12,14]. However, we now refrain from focussing on a single solver but directly
use the performance ratio of two solvers as the fitness function inside the EA.

Section 2 provides details of the TSP solvers and feature sets, while the evo-
lutionary algorithm is presented in Sect. 3. The conducted experimental results
are illustrated and discussed in Sect. 4 followed by summarizing remarks and an
outlook on future research perspectives in Sect. 5.

2 Solvers and Features

TSP Solvers. Both LKH, a stochastic local search algorithm based on the
Lin-Kernighan procedure [6], and EAX [13], a recently introduced evolutionary
algorithm utilizing a specialized new edge assembly crossover procedure, are
focussed. LKH is the state of the art in inexact TSP solving since its introduction
in 2000. We used the reference implementation LKH 2.0.7 based on the former
implementation 1.3 [10]. In [8], we introduced a dynamic restart mechanism
as the underlying stochastic search process tends to stagnate too early quite
frequently. This version is termed LKH+restart. The first indication that EAX
could be competitive to LKH was given in [13], which was confirmed in [8]. In
the latter paper, a restart strategy for EAX, EAX+restart, was implemented
based on the original internal termination criterion. Once this is met, a restart
is conducted and this procedure is repeated until a given accuracy or running
time limit is reached.

It could be shown [8] that the respective restart variants outperform the orig-
inal solver versions. Moreover, EAX+restart emerged as the single best solver
over the set of considered representative instances. However, an algorithm selec-
tion model based on features that are quite cheaply computable could be learnt
that managed to perform even better.

1 All these feature sets have been recently made availabe in a single R-Package [4].



50 J. Bossek and H. Trautmann

Features. Established feature sets for characterizing Euclidean TSP instances,
i.e. the feature set described in [12] as well as in [7], are used for characteriz-
ing both the evolved as well as the baseline (random, TSPLIB) instances. We
denote the former as TSPMeta and the latter as UBC features. The recently
introduced additional set of features based on k-nearest neighbours [15] will be
focussed in future studies. Both considered sets contain a comprehensive col-
lection of features including e.g. features characterizing the distance structure,
identifying possible clusters of nodes, statistics based on angles between cities
and its two nearest neighbours as well as minimum spanning tree information.
The R-package salesperson [4] containing all relevant feature sets is used for the
feature computation task. Having already the algorithm selection task in mind
for further studies, we restricted our feature set to cheaply computable features,
i.e. we excluded the local search, branch and cut, and clustering distance features
from the UBC feature set (UBC (cheap)) as motivated in [8].

3 On Evolving Instances

A simplified pseudocode is given in Algorithm 1: the initial population is gen-
erated by placing the desired number of nodes uniformly at random in the
unit square [0, 1]2. Subsequently, the next generation is obtained by selecting
two parents from the mating pool, applying crossover as well as two mutation
strategies in a row, namely uniform and gaussian mutation. Uniform mutation
is applied with a very low probability. This operator replaces the node coordi-
nates of selected nodes with new randomly chosen coordinates and thus may be

Algorithm 1. Evolving EA
1: function EA(fitnessFun, popSize, instSize, generations, timeLimit)
2: poolSize = � popSize / 2 �
3: for i = 1 → popSize do
4: population[i] = generateRandomInstance(instSize) � in [0, 1]2

5: end for
6: while stopping condition not met do
7: for i = 1 → popSize do
8: fitness[i] = fitnessFun(population[i])
9: end for

10: matingPool = createMatingPool � 2-tournament-selection
11: offspring[1] = getBestFromCurrentPopulation � 1-elitism
12: for i = 2 → popSize do
13: Choose p1 and p2 randomly from the mating pool
14: offspring[i] = applyVariations(p1, p2)
15: Rescale offsspring to [0, 1]2 � Algorithm 2
16: Round to cell grid � Algorithm 3
17: end for
18: population = offspring
19: end while
20: end function
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termed a global mutator. In contrast, gaussian mutation works locally by adding
normally distributed noise to the point coordinates. The two sequential muta-
tion strategies together enable small local as well as global structural changes
of the offspring resulting from the crossover operation. Furthermore, a 1-elitist
strategy is adopted to ensure survival of the current fittest individual.

A final rescaling of the evolved instances ensures the complete coverage of
[0, 1]2 in that the minimum and maximum coordinates are placed on the bound-
ary of the instance space (see Algorithm 2). Therefore the area will be covered
quite homogenously and instances become comparable in this regard. Afterwards
the instance nodes are rounded to the nearest grid cell center after discretizing
the plane using a grid with cells sections (see Algorithm 3). This relates to
the aim of evolving practically relevant structures (e.g. in the design of circuit
boards) and will furthermore affect some features which incorporate the pro-
portion of distinct distances. Note that this strategy conceptually differs from
rounding to a predefined number of digits. Figure 1 (taken from [12]) visualizes
both rescaling and rounding.

Algorithm 2. Rescale Instance
1: function rescale(instance)
2: mins ← column mins(instance)
3: maxs ← column maxs(instance)
4: δ ← maxs − mins
5: scaled ← ∅
6: for city ∈ instance do
7: scaled ← scaled ∪ {(city − mins)/δ}
8: end for
9: return scaled

10: end function

Algorithm 3. Round instance
1: function round(instance, cells)
2: gridRnd ← createGrid(resolution = cells)
3: instRnd ← floor(instance ∗ cells)/cells
4: for i = 1 to instSize do
5: instRnd[i, ] ← SetToCellCenter(instRnd, gridRnd)
6: end for
7: return instRnd
8: end function

Mersmann et al. [11] had chosen the approximation ratio, i.e., the arithmetic
mean of the tour length computed by the considered stochastic algorithm divided
by the length of the optimal tour computed by Concorde as the fitness function
to be optimized. The first idea was to adopt this approach with slight modifica-
tions, since we aim to generate instances for pairs of algorithms A and B, i.e.,
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Fig. 1. Rescaling of an instance of size 25 (left). The original instance is reflected by
black dots. Rounding of an instance of size 25 to grid cell centers (right). The rounded
instance is visualized by white dots.

to focus on the ratio of the arithmetic means of the respective tour lengths [3].
However, we observed LKH and EAX and the restart variants respectively to
perform extraordinary well even on large instance sizes up to 1000 in preliminary
experiments. Hence, we experienced the approximation ratio to be unrewarding
for our aims since we observed the “best” generated instance to have an approx-
imation ratio of approximately 1 in our first series of experiments. In fact, the
chosen state of the art solvers turned out to be too powerful for this scenario.
Instead, our approach is slighty different. We use the penalized average runtime
consumed by an algorithm to find the optimal tour (computed by Concorde in
advance) as the performance of the algorithm. However, an algorithm reaching
the cutoff time is not penalized with 10 times the latter within the EA as it is
the standard procedure in par10. The cutoff time itself is used as otherwise the
probability that such solutions would be removed at later stages of the EA run
would be extremely low. However, for the final instance evaluation, the classsical
par10 score is used. For ensuring integer values of the distance matrix inside the
EA, the euclidean distance matrix is computed on the original coordinates, mul-
tiplied by a scaling factor of 100 and afterwards rounded to the nearest integer.

Let RA(I) denote the slightly modified penalized average runtime of
algorithm A on instance I as explained above. Then the runtime proportion
R(A,B)(I) for a pair of algorithms (A,B) is defined as

R(A,B)(I) =
RA(I)
RB(I)

.

This runtime ratio serves as the fitness function in our investigations. We thus
moved the focus to the time aspect instead of the solution quality. We minimize
R(A,B) in order to generate instances which are easier to solve for algorithm A
and harder to solve for algorithm B respectively.
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4 Experiments

4.1 Experimental Setup

We generated each 25 instances of size 300 for each solver pairing (EAX, LKH),
(LKH, EAX), (EAX RESTART, LKH RESTART) and (LKH RESTART,
EAX RESTART) resulting in an evolved instance set of 100 TSP instances.
Inside the evolutionary algorithm, each solver is replicated three times on
each instance due to limited computational budget. The final evaluation of the
instances, however, is based on 10 replications and the classical par10 score. All
internal termination criteria besides cutoff time of two minutes were deactivated
in all runs to get reasonable estimates of the performance measure.

Based on preliminary experiments and the experience of [11,12] the EA para-
meters were set to popSize = 30, generations = 5000, uniformMutationRate
= 0.001, normalMutationRate = 0.1, cells = 100, and the standard deviation
of the gaussian mutation operator normalMutationSD = 0.025.

As a baseline, 100 random instances were generated by placing the desired
number of nodes uniformly at random in the unit square [0, 1]2. The Euclidean
distance matrix was computed, multiplied by a scaling factor of 100 and subse-
quently rounded to the nearest integer. Moreover, Euclidean TSPLIB instances
with node sizes between 200 and 4002 were chosen in order to allow comparisons
to practically relevant instances. For all considered algorithms the respective
par10 scores were applied for comparison.

All experiments were run on the parallel linux computer cluster PALMA at
University of Münster, consisting of 3528 processor cores in total. The utilized
compute nodes are 2,6 GHz machines with 2 hexacore Intel Westmere processors,
totally 12 cores per node and 2 GB main memory per core.

4.2 Results

Figure 2 visualizes the par10 scores of all instances for both solver pairs (EAX vs.
LKH, EAX+restart vs. LKH+restart) in a scatterplot. The instances are marked
w.r.t. instance type, i.e. either “random”, “evolved” or “tsplib”. It becomes
obvious that the introduced evolutionary approach very successfully generates
instances with high performance differences of the solvers. Even in the restart
scenario where solver runtimes are quite homogenously clustered in the center
of the plot, the evolved instances can clearly be distinguished and are located
far away from the bisecting line. Both optimization directions work well (two
clusters of instances) while evolving instances which are easier for EAX+restart
is even more successful (upper cluster). Moreover, the TSPLIB instances are
much easier to solve compared to the remaining ones in both scenarios. There is
only one exception (rd400) which is extremely hard for both solvers.

Figure 3 presents boxplots of the par10 scores distribution for each solver cat-
egorized by instance type and confirms the discussed findings. In all cases but the
2 TSPLIB-Instances: a280, gil262, kroA200, kroB200, lin318, pr226, pr264, pr299,

rd400, ts225, tsp225.
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Fig. 2. Par10 scores (log-scale) of EAX vs. LKH (left) resp. EAX+restart vs.
LKH+restart (right). Colors help to distinguish between the instance types. (Color
figure online)

Fig. 3. Boxplots of the par10 scores (log-scale) for each solver categorized by instance
type. (Color figure online)

original EAX the runtimes of the evolved instances are substantially higher com-
pared to the random ones. Specifically, the variability of the runtimes increases
reflected by the upper quartile, i.e. the upper border of the boxes. Frequently,
even the runtime of Concorde was exceeded so that using an inexact solver was
of no merit in retrospect. In general, as problem hardness tends to increase for
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Fig. 4. Ratios of par10 scores for each solver pair, i.e. R(A,B). A value smaller than
one means that the runtime of the first solver is smaller than the respective one of
the second. This ratio is the fitness function to be minimized inside the evolutionary
algorithm for evolving the respective instances. (Color figure online)

both solvers, local search in general becomes harder for the evolved instances.
However, the extent varies by solver which results in low par10 score ratios.
Par10 scores on the TSPLIB instances differ significantly from the remaining
ones, the whole distribution is located far more to the left. Here, you can see the
single hard outlier instance as well.

The actual par10 score ratios are presented by boxplots in Fig. 4. Values
smaller than one reflect the superiority of the first solver from the pair (SolverA,
SolverB), i.e. Solver A has a smaller par10 score than Solver B. As this ratio
forms the objective function of the evolutionary algorithm, which has to be
minimized, we expect these values to be substantially lower than one. Apart
from very few outliers this is confirmed by the respective boxplots. Furthermore,
significant differences are obvious compared to the random instances, even for
the (LKH, EAX) pair where LKH already exhibits much lower runtimes than
EAX on the random instances.

Representative instances are plotted in the Euclidean plane in Fig. 5. For
each solver pair the four smallest instances regarding the par10 score ratio are
displayed. Unfortunately, structural difference are very particular and cannot be
clearly detected visually. Therefore, we additionally made use of machine learn-
ing techniques. A classification approach was conducted for each solver pairing
with the aim of predicting the instance type (random, evolved) based on the TSP
feature set comprising TSPMeta and UBC (cheap). To derive the most important
features a nested feature selection with 10-fold crossvalidation was performed
based on a simple classification tree. Deterministic forward and backward search
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Fig. 5. Four lowest ranked instances regarding the par10 score ratio for all scenarios.
Evolved instances are visualized on top, the random instances below.
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Fig. 6. Scatterplots of the two most important features selected during the feature
selection step for predicting the instance type (random, evolved) based on instance
features for the original versions (left) and the restart versions (right). (Color figure
online)

served as the search strategy guiding the feature selection. Additionally an outer
10-fold crossvalidation was used in order to preserve that the selected features
depend on the underlying fold. All computations were conducted with the R
package mlr [2].

It turns out that the fraction of distinct distances is sufficient to separate
random and evolved instances (see the scatterplots in Fig. 6) for both solver
pairings {EAX,LKH} and {EAX RESTART,LKH RESTART}. Misclassi-
fication errors vanish for both pairings. Thus, local search gets harder for higher
fractions of distinct distances which was already hinted at in other studies. The
observed characteristic of the evolved instances might be linked to the round-
ing strategy to grid cell centers applied to each individual in the evolutionary
algorithm after mutation. However, the considered solvers face different levels
of difficulties not solely depending on this fraction. The kind of classification
probably will differ for instances evolved based on deactivated rounding to grid
cell centers. We are going to investigate this in future work.

5 Conclusion

In this paper, we used an evolutionary approach to evolve TSP instances with
maximal perfomance difference of LKH+restart vs. EAX+restart and of the pair
of the respective original variants (without restart). For instances of size 300 a
substantial decrease of solver performance ratios compared to the behaviour on
random and TSPLIB instances could be obtained. This especially holds for the
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restart variants which are the state of the art inexact TSP solvers while it turned
out that it was more effective to generate easier instances for EAX+restart
together with much harder instances for LKH+restart than the opposite case.
However, one has to be aware that a small performance ratio RA(I)/RB(I) does
not necessarily mean, that I is easy to solve for A. It may be hard for both, but
easier for A.

Comparing random and evolved instances, it turned out that the number
resp. the fraction of distinct distances is a central factor for separating both
instance sets, i.e. local search in general gets harder given this situation. How-
ever, this feature is not suited for distinguishing between the performance of the
solvers within the evolved instance sets. The next step will therefore consist of
predicting the optimization direction for each solver pairing {A,B} (easy for A
or easy for B), i.e. a detailed analysis which features resp. feature combinations
allow for identifying the kind of solver which performs worse than its competitor
within the evolved set will be conducted. Of course, the fraction of distinct dis-
tances alone does not provide sufficient information to separate here as in this
respect the set is quite homogenous. Preliminary studies indicate that features
based on relating the node locations to the centroid of all nodes might play a
role here.

In future work we will moreover work on adapting the EA to specifically
focus on diversity of evolved instances to generate distinct structures as well as
on assessing the influence of the internal rescaling and rounding steps. Moreover,
larger instances will be addressed in a systematic way.
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