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ABSTRACT
In practice, e.g. in delivery and service scenarios, Vehicle-Routing-

Problems (VRPs) often imply repeated decision making on dynamic

customer requests. As in classical VRPs, tours have to be planned

short while the number of serviced customers has to be maximized

at the same time resulting in a multi-objective problem. Beyond

that, however, dynamic requests lead to the need for re-planning

of not yet realized tour parts, while already realized tour parts

are irreversible. In this paper we study this type of bi-objective

dynamic VRP including sequential decision making and concurrent

realization of decisions. We adopt a recently proposed Dynamic

Evolutionary Multi-Objective Algorithm (DEMOA) for a related

VRP problem and extend it to the more realistic (here considered)

scenario of multiple vehicles.We empirically show that our DEMOA

is competitive with a multi-vehicle offline and clairvoyant variant

of the proposed DEMOA as well as with the dynamic single-vehicle

approach proposed earlier.

CCS CONCEPTS
• Applied computing → Multi-criterion optimization and
decision-making; Transportation.
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1 INTRODUCTION
Routing of multiple vehicles is an important and difficult problem

with applications in the logistic domain [34], especially in the area

of customer servicing [13]. In postal services, after-sales services,

and in business to business delivery or pick up services one or

more vehicles have to be efficiently routed towards customers. If

customers can request services over time, the problem becomes dy-

namic: besides a set of fixed customers, new requests can appear at

any point in time. Of course, it is desirable that as many customers
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as possible are serviced while the tour of any vehicle is kept short.

However, it is usually infeasible (due to human resources, labor

regulations, or other constraints) to service all customer requests.

And clearly, the less customers are left unserviced, the longer the

tours become. Thus, the problem is inherently multi-objective. Any

efficient solution (smallest maximum tour across all vehicles) is a

compromise between the desire to service as many customers as

possible (e.g. maximize revenue) and the necessity to keep vehicle

routes short (minimize costs). At the same time, the dynamic ap-

pearance of new customer requests may significantly change the

scenario over and over again: new but ignored requests negatively

contribute to the objective of visiting as many customers as possi-

ble, while the inclusion of new customers (usually) increases tour

length and thus changes the compromises on which a selection of

a route was originally made by a decision maker (DM).

This dynamic problem has been studied by Bossek et al. [5]

for the special case of a single vehicle which answers all requests

and travels (in an open tour) from a start to an end depot. The

authors devised a dynamic evolutionary approach based on an in-

teractive algorithmic framework that incorporated an evolutionary

multi-objective optimization algorithm (EMOA) applied in eras and

repeated decision making. However, the applied EMOA is rather

unrealistically based on the assumption, that only one vehicle is

available.

In this work, we will reuse the framework proposed by Bossek et

al. [5] but replace the internal EMOA [4] by an adapted algorithm

that is capable of considering multiple vehicles. The inclusion of

multiple vehicles changes the problem (and thus the algorithm)

considerably: Instead of a single tour (single open TSP), as many

tours as considered vehicles have to be optimized simultaneously.

This implies changes in problem encoding, in information transfer

between generations, and in variation operators.

At the same time, the number of vehicles is explicitly not con-

sidered as additional objective. To keep the scenario realistic, the

number of vehicles can neither be changed during the optimization

process nor in each era. A dynamic change in the number of used

vehicles during the process would require most flexible (and thus

costly) human resources and is therefore usually infeasible for a

company.
1
Additionally, a third objective would turn the originally

bi-objective problem in a more complex-to-handle decision scenario

for the DM.

The goal and contribution of this work is twofold:

(1) The dynamic multi-objective vehicle routing problem (MO-

VRP) and the dynamic solution approach are extended to-

wards a more realistic scenario by including multiple vehi-

cles. We introduce a significantly changed algorithm within

the interactive framework proposed in [5].

1
Visits at single or few customers (including direct travel from and return to a depot)

would immediately contribute high costs to the total tour costs.
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(2) We analyze the benefit of multiple vehicles in dynamic ve-

hicle routing and compare our approach to an (extended)

version of an a-posteriori evolutionary solution approach

for this problem [17]. This approach unrealistically knows of

all service requests in advance (clairvoyant) and thus needs

no dynamic decision making during optimization. Further,

we compare the multi-vehicle approach to the dynamic ap-

proach by Bossek et al. [5] and investigate the activities of

vehicles. The individual activities of vehicles provide infor-

mation onwhether each vehicle contributes to the solution or

whether some vehicles stay idle. This evaluation can eventu-

ally justify our decision to not include the number of vehicles

as third objective.

The work is structured as follows: the next section briefly re-

flects the related work, while Section 3 formally introduces the

dynamic multi-objective problem as described by Bossek et al. [5].

Section 4 then details the algorithmic extensions. The experimental

setup as well as empirical results are described and discussed in

Sections 5 and 6. Section 7 finally concludes the work and highlights

perspectives for future research.

2 RELATEDWORK
As the traveling salesperson problem (TSP) is a major sub-problem

of the here considered dynamic and multi-objective vehicle routing

problem, this paper is naturally related to work on special TSPs,

where not all customer locations (or cities) have to be visited. In

research, these problems are sometimes referred to as orienteering

problems [15], selective TSP [14, 24], or as TSP with profits [11].

However, most of these problems are discussed as single-objective

problems [10], although some early work already recognized the (at

least) bi-objective character of these problems [22]. Only later work

started to solve the orienteering problem in a bi-objective way using

an ϵ-constraint approach [2] or approximation schemes [12] that

produce Pareto-ε-approximations of the efficient solution set. While

the both before mentioned approaches are based on repeated single-

objective optimization, some authors [20, 21, 30, 35, 37] explicitly

solve the bi-objective variants of the orienteering problem using an

evolutionary algorithm, however, excluding service requests over

time or considering the problem as a-posteriori (non-dynamic).

Many of these approaches [21, 30, 35] introduce the number of

vehicles as an objective to be minimized while simultaneously min-

imizing the tour length.

A related a-posteriori variant of the here considered dynamic

problem is described by Grimme et al. [17], who propose an NSGA-

II-based EMOA. This work has been extended later on by the inte-

gration of local search mechanisms [27] and the analysis of local

search effects [4]. These works only allow one vehicle (like also

described in [15, 36]) but include the number of visited customers

(revenue) as second objective besides tour length (costs).

While considering only one vehicle seems to be unrealistic, the

inclusion of the number of vehicles as objective is only feasible in

the a-posteriori and non-dynamic case. When problem instances

change constantly due to customer requests (related examples from

logistics and other domains can be found here: [16, 28, 32]) decision

making is also a repetitive process over time. However, over time,

decisions are constantly renewed building on past decisions which

of course cannot be changed. In vehicle routing, one or more vehi-

cles start at a depot and travel initially decided tours. Later on, new

decisions have to take into account the current location as well as

newly received or not yet serviced customer requests [5]. Rewind-

ing of previous decisions (i.e. visits of customers) is impossible. As

such, the initial decision for a fixed number of vehicles could only

be changed by sending vehicles home or activating additional ones.

This however, causes additional traveling costs and contradicts (in

the real world) human resources’ availability or labor regulations.

Thus, it is most realistic not to consider the number of vehicles as

additional objective in the dynamic case.

In general, dynamic vehicle routing is usually addressed by de-

signing online decision rules, see e.g. [26, 31]. According to Braekers

et al. [7] only little work is available on dynamic multi-objective

problems. In their survey they mention authors who consider dy-

namics in service time windows and changing structures of the

network [1, 18, 23, 25, 38].

3 PROBLEM NOTATION
The here considered dynamic multi-objective VRP can be denoted

as follows: we consider a set of customer locations, which can

be partitioned into three disjoint sets, C = M ∪ D ∪ {N − 1,N }.
The subsetM contains all mandatory customers locations that are

initially known and have to be visited, while the subset D contains

all dynamic customers that appear over time and are not known

to the algorithm beforehand. The third subset {N − 1,N } denotes
the locations of the start and the end depot. Note that we consider

the more general case here, in which start and end depot can be

different. The more common special case of start and end depot

being at the same location is of course included.

We consider two objectives in a minimization problem. The first

objective aims for the minimization of the maximum tour length

for all vehicles. Let nv be the number of vehicles and x a solution

to the problem, then we denote the tour length for each vehicle

i ∈ {1 . . . ,nv } as Li (x) and determine f1(x) = maxi Li (x). By using
the maximum tour length as objective, we expect a balanced usage

of vehicles in any solution. The second objective f2 minimizes the

number of unserved dynamic customers
2
.

Clearly, the objectives are in conflict and we need to adopt the

notion of Pareto-optimality and dominance to describe compromise

solutions for the resulting multi-objective optimization problem.

For two solutions x and y, we denote x ≺ y (x dominates y), if x is

not worse in any objective and better in at least one objective than

y. The set of all non-dominated solutions in search space is called

Pareto set; its image in objective space is called Pareto front [8].
As we consider a dynamic problem, anytime a dynamic customer

requests service, the Pareto-set would have to be recomputed for

the still unvisited mandatory and dynamic customers and a desired

solution needs to be selected. As this is usually infeasible in prac-

tice, we discretize time and define nt intervals of length ∆ ∈ R≥0
called eras that partition dynamic requests and subsequent decision

making into phases [33].

2
Note that we consider the number of unserved dynamic customers to realize a mini-

mization of all objectives. Clearly, the second objective is equivalent to the maximiza-

tion of served dynamic customers.
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At the onset t = (j − 1) · ∆ of each era j , new dynamic customer

requests may have appeared. Based on this set and the remaining

(not yet visited) mandatory customers in M , we can consider the

problem as a static multi-objective optimization problem (MOP)

and apply an EMOA to approximate the current Pareto-set. Then, a

decision maker (DM) is provided with the compromises and allowed

to pick a solution (i.e. a set of nv tours) which will be realized until

the onset of the next era.

Note that in each era j > 0 the vehicle has started to realize a

tour and possibly has already visited mandatory and/or dynamic

customers. Naturally, already realized parts of earlier picked solu-

tions are not reversible anymore. Thus, decisions made in earlier

eras may have significant influence on later solutions. We address

this challenge by introducing an automated decision making pro-

cess as proposed in [5] and evaluating different configurations and

decision chains, later on.

4 A DYNAMIC MULTI-OBJECTIVE
EVOLUTIONARY ALGORITHM

Next we dive into the working principles and algorithmic details of

the proposed DEMOA. The algorithm is a natural extension of the

DEMOA proposed in Bossek et al. [6] for the single-vehicle version

of the considered bi-objective problem. The algorithmic steps are

outlined in Alg. 1. The algorithm requires the following parameters:

the problem instance comprising of the subsetsM of mandatory and

D of dynamic customers. Further parameters control the number

and the length of eras (nt and ∆), the number of vehicles nv and

EA-specific arguments like the population size µ and parameters

controlling for the strength of mutation (details discussed later).

We now describe the DEMOA procedure in general and discuss

implementation details (initialization and variation) subsequently.

Algorithm 1 DEMOA

Require: a) Customer setsM , D, b) nr. of eras nt ,
c) era length ∆, d) nr. of vehicles nv , e) population size µ,
f) prob. to swap pswap, g) nr. of swaps nswap

1: t ← 0 ▷current time
2: P ← ∅ ▷population (initialized below)
3: T ← list of tours ▷empty at the beginning of 1st era
4: for i ← 1 to nt do ▷era loop
5: T ≤t ← list of nv partial tours already driven by vehicles at

time t extracted from list T ▷empty in 1st era
6: P ← initialize(µ,T ≤t , t, P) ▷see Alg. 2; pass last
population of previous era as template

7: while stopping condition not met do ▷EMOA loop
8: Q ← {mutate(x,T ≤t ,pswap,nswap) | x ∈ P} ▷Alg. 3
9: Q ← {localsearch(x) | x ∈ P}
10: P ← select(Q ∪ P) ▷NSGA-II survival-selection
11: T ← choose(P) ▷DM makes choice ; list of nv tours
12: t ← t + ∆

4.1 General (D)EMOA
Initialization steps (Alg. 1, lines 1-3) consist of declaring a popula-

tion P and a listT whereTv contains the tour of the corresponding

Algorithm 2 INITIALIZE

Require: a) pop. size µ, b) initial tours T ≤t , c) time t ,
d) template population P

1: Q ← ∅
2: for j ← 1 to µ do
3: if P is empty then ▷1st era; no template given
4: x .vi ← random vehicle from {1, . . . ,nv } for all i ∈ C
5: x .ai ← 1 for all i ∈ M
6: x .ai ← 0 for all i ∈ D
7: x .p ← random permutation of C = M ∪ D
8: else ▷repair template
9: x ← Pj ∈ P
10: x .ai ← 1 for all i ∈ T ≤t

11: x .vi ← vehicle nr. assigned to i in T ≤t

12: In x .p move sub-sequence of driven tour in T ≤t at the
beginning for each vehicle.

13: x .ai ← 1 for each i in random subset of Dnew

14: Q ← Q ∪ {x}
return Q

vehiclev ∈ {1, . . . ,nv }, i.e.,T stores the solution the decisionmaker

picked at the end of the previous era. Before the first era begins

these tours are naturally empty since no planning was conducted

at all. Line 4 iterates over the eras. Here, the actual optimization

process starts. The first essential step in each era is – given the

passed time t – to determine for each vehicle v ∈ {1, . . . ,nv } the
initial tour already realized by vehicle v . This information is ex-

tracted from the list of tours T and stored in the list T ≤t . Note that
again, in the first era the initial tours are empty, as is T , since the
vehicles are all located at the start depot. Next, the population is

initialized in line 6 and a static EMOA does his job in lines 7 − 10.

Here, offspring solutions are generated by mutation followed by a

sophisticated genetic local search procedure with the aim to reduce

the tour lengths of solutions. Finally, following a (µ+λ)-strategy the
population is updated. Therein, the algorithm relies on the survival

selection mechanism of the NSGA-II algorithm [9]. Once a stopping

condition is met, e.g., a maximum number of generations is reached,

the era ends and the final solution set is presented to a decision

maker who needs to choose exactly one solution (Alg. 1, line 11).

This choice (the list T of nv tours) determines the (further) order

of customers to be visited by the respective service vehicles.

Algorithm 3 MUTATE

Require: a) individual x , b) initial tours T ≤t , c) swap prob. pswap,
d) nswap

1: Dav ← dyn. customers available at time t and not in T ≤t

2: Cav ← all customers available at time t and not in T ≤t

3: pa ← 1/|Dav |

4: pv ← 1/|Cav |
5: Flip x .ai with prob. pa for all i ∈ Dav
6: Change vehicle x .vi with prob. pv for all i ∈ Cav
7: if random number in (0, 1) ≤ pswap then
8: Exchange nswap times each two nodes from Cav in x .t
return x
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4.2 Initialization
We strongly advice the reader to consult Alg. 2 and in particular

Fig. 1 in the course of reading the following explanations for visual

support. Each individual is built of three vectors x .v, x .a and x .p
of length N − 2 each of which stores information on the vehicles

assigned, the activation status of each customer and a permutation

of all customers. In the first era there are no already visited cus-

tomers, i.e. both P and T ≤t are empty, and the algorithm does not

need to take these into account. Hence, in lines 4-7 each individual

x ∈ P is created from scratch as follows: each customer i ∈ (M ∪D)
is assigned a vehicle v ∈ {1, . . . ,nv } uniformly at random. This

information is stored in the vector x .v . Next, all mandatory cus-

tomers i ∈ M are activated by setting the value of a binary string

x .a ∈ {0, 1}N−2 to 1 which means “active”. In contrast, all dynamic

customers i ∈ D are deactivated (x .ai = 0) since they did not ask

for service so far. The final step is to store a random permutation

of all customers in the permutation vector x .p. Note that during
fitness function evaluation in order to calculate the individual tour

lengths Lv (x) for each vehicle v only the sub-sequence of posi-

tions i ∈ {1, ...,N − 2} in x .p is considered for which x .ai = 1 and

x .vi = v holds.

Initialization in later eras is different and more complex. Now,

the parameter P passed to Alg. 2 – the final population of the pre-

vious era – is non-empty and its solutions serve as templates for

the new population. We aim to transfer as much information as

possible. However, usually the majority of individuals x ∈ P is

in need of repair. This is because as time advances (note that ad-

ditional ∆ time units have passed) further customers i ∈ C may

already have been visited by the vehicle fleet, but it is possible

that some of these are inactive in x (i.e., x .ai = 0). Hence, (a) all

customers which have already been visited, stored in the list T ≤t ,
are activated and assigned to the responsible vehicle (here we use

an overloaded element-of relation on lists in the pseudo-codes for

convenience) and (b) furthermore their order in the permutation

string x .p is repaired. The latter step is achieved by moving the

sub-sequence of visited customers before the remaining customers

assigned to the corresponding vehicle in the permutation string.

This step completes the repair procedure and the resulting individ-

ual is guaranteed to be feasible. Subsequent steps involve randomly

activating customers that asked for service within the last ∆ time

units.

4.3 Offspring generation
The mutation operator (see Alg. 3) is designed to address all three

combinatorial aspects of the underlying problem, i.e., vehicle re-

assignment, customer (de)activation and tour permutation. Here,

special attention has to be paid to not produce infeasible individuals.

Therefore, mutation operates on the subset of customers which have

asked for service until now and have not yet been visited. More

precisely, each dynamic customer i ∈ Dav = (D
≤t \T ≤t )which has

not yet been visited is (de)activated with a small probabilitypa (note

that we treat the list T ≤t as a set here for convenience). Likewise,
each of the customers i ∈ C≤t = (C≤t \T ≤t ) is assigned another

vehicle independently with equal probability pv . The mutation

probabilities pa and pv are set dynamically such that in expectation

only one (de)activation or (re)assignment happens; small changes

Customer sets
M = {1, 5, 6},D = {2, 3, 4}
D≤t = {3, 4}

(Partial) tours
T1 = (1, 5, 3),T2 = (6)
T ≤t
1
= (1, 5),T ≤t

2
= (6)

Encoding of solution x
i 1 2 3 4 5 6

x .v 1 2 1 1 1 2

x .a 1 0 1 0 1 1

x .p 4 1 6 5 3 2

7

start depot

4 5 6

1 2 3

8

end depot

Figure 1: Illustration of the encoding of an individual x .
Here, customers i ∈ {1, 3, 5, 6} are active (x .ai = 1) while
customers i ∈ {2, 4} are inactive (x .ai = 0); customer 4 how-
ever asked for service already since 4 ∈ D≤t . In contrast, cus-
tomer 2 did not ask for service so far (illustrated by reduced
opacity in the plot). The vehicles already visited a subset
of customers (illustrated with thick edges): vehicle one ser-
viced customers 1 and 5 (thus T ≤t

1
= (1, 5)) while customer 6

was visited by vehicle 2 (thus T ≤t
2
= (6)).

are preferred. Finally, with probabilitypswap the permutation vector

x .p undergoes nswap sequential exchange/swap operations (limited

to customers which are not fixed so far). Occasionally, at certain

iterations, a local search (LS) procedure is applied to each individual

x ∈ P (see line 9 in Alg. 1). The LS takes the vehicle mapping x .v and

customer activation x .a as fixed and aims to improve the individual

path length by means of the sophisticated solver EAX [29] for

the Traveling-Salesperson-Problem (TSP). To accomplish this goal,

given a solution x ∈ P and a vehicle v ∈ {1, . . . ,nv } all customers

assigned tov inx (appending start and end depot) and their pairwise

distances are extracted (nodes 1, 3, 5, 7, 8 for vehicle 1 in Fig. 1).

Next, since the optimization of each vehicle tour is a Hamilton-Path-

Problem (HPP) on the assigned customers (no round-trip tour), a

sequence of distance matrix transformations is necessary such that

the TSP solver EAX can be used to find an approximate solution

to the HPP (see [19] for details). Again, since partial tours might

already have been realized, the HPP-optimization starts at the last

node visited by the corresponding vehicle (node 5 in Fig. 1 for

vehicle 1, since T ≤t
1
= (1, 5) is fixed already and not subject to

changes).

5 EXPERIMENTAL METHODOLOGY
Our benchmark set consists of in total 50 instances with each n =
100 customers taken from [27]. There are 10 instances with points

spread uniformly at random in the Euclidean plane and each 10

clustered instances with the number of clusters nc ∈ {2, 3, 5, 10}.
The cluster centers are placed by space-filling Latin-Hypercube-

Sampling to ensure good spread. Subsequently, ⌊n/nc ⌋ nodes are
placed around each cluster center assuring cluster segregation with

no overlap. We refer the reader to [27] for more details on the

instance generation process. The proportion of dynamic customers
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Table 1: DEMOA parameter settings.

Parameter Value

Nr. of function evaluations per era 65 000

Population size µ 100

Swap probability pswap 0.6

Nr. of swaps nswap 10

Local Search at generations first, half-time, last

1 2

3

4

5

6

7

1 2

3

4

5

6

7

uniform 2 clusters
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Figure 2: Exemplary Pareto-front approximations for two
instances with 75% dynamic requests colored by era and split
by problem type (columns) for a single vehicle. Solutions se-
lected by the respective decision maker (0.25-strategy) are
highlighted and labeled with the era number. Dashed hor-
izontal lines represent the maximum number of dynamic
requests which can remain unserved in the respective era.

is 50% and 75% for each half of the instance set enabling the study

of highly dynamic scenarios.

5.1 Dynamic aspects and decision making
We fix nt = 7 eras and set the era-length to ∆ = ⌈maxi ∈D r (i)/nt ⌉
where r (i) is the request time of customer i . ∆ is consistently ≈ 150

time units across all instances. Naturally, one could start a new

epoch once a new customer requests for service. This would result in

50 and 75 eras respectively on our benchmark instances
3
. However,

we argue that in a real-world scenario it is more realistic to make

decisions after chunks of requests came in and not every single

time. For computational experimentation we automate the decision-

making process by considering three different decision maker (DM)

strategies. To do so, at the end of each era, we sort the final DEMOA

population P in ascending order of the first objective (tour length),

i.e. P(1) ≤ P(2) ≤ . . . ≤ P(µ) where the ≤-relation is with respect

to f1. Note that in the bi-objective space this sorting results in a

descending order with respect to the number of unvisited dynamic

customers, our second objective (f2). The automatic DM now picks

the solution P(k ) with k = ⌈d · µ⌉, d ∈ [0, 1] where increasing d-
values correspond to stronger “customer-greediness”, i.e. higher

emphasis on keeping the number of unvisited customers low. In

our study we cover d ∈ {0.25, 0.5, 0.75} to account for different

3
Note that the benchmark sets contains instances with N = 100 customers

(including two depots) and {50%, 70%} dynamic customers.

levels of greediness and refer to such a policy as a d-strategy in the

following. Certainly, in real-world scenarios, the DM might change

his strategy throughout the day reacting to specific circumstances.

However, for a systematic evaluation and to keep our study within

feasible ranges, we stick to this subset of decision policies.
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Figure 3: Exemplary visualization of final DM-decisions (i.e.,
in last era) for three representative instances with 75% dy-
namic requests colored by decisionmaker strategy. The data
is split by instance (columns) and number of vehicles used
(rows).

5.2 Further parameters
The further parameter settings of the DEMOA stem from prelimi-

nary experimentation and are gathered in Table 1. For each number

of vehicles nv ∈ {1, 2, 3} and each DM strategy d ∈ {0.25, 0.5, 0.75}
we run the DEMOA 30 times on each instance for nt eras following
the d-strategy. Moreover, for a baseline comparison, we run the

clairvoyant EMOA multiple times for each nv on each instance

with a stopping condition of 20 000 000 function evaluations. The

clairvoyant EMOA works the same way the DEMOA does. How-

ever, it has complete knowledge of the request times of dynamic

customers a-priori and treats the problem as a static problem.
4
This

idea was originally introduced in [17] for an a-posteriori evaluation

of decision making for the single-vehicle variant of the considered

problem.We use the Pareto-front approximations of the clairvoyant

EMOA as a baseline for performance comparison. We provide the

R implementation of our algorithm in an accompanying reposi-

tory [3].

4
Consider the clairvoyant EMOA as the proposed DEMOA (see Alg. 1) run for one

era with t = 0 and all customers available from the beginning accounting for request

times in the tour length calculations.
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6 EXPERIMENTAL RESULTS
In the following, we analyze the proposed dynamic approach (DE-

MOA) for one to three vehicles with an adapted clairvoyant imple-

mentation of the original approach by Bossek et al. [4]. For a fair

comparison, that approach has been extended to deal with multiple

vehicles and is denoted as EMOA in the following results.

In a first step, we show exemplary results of our dynamic ap-

proach to visually introduce the era concept. In continuation of

the approach of Bossek et al. [5], we also briefly investigate the

influence of decision making to final decision location, when differ-

ent greediness preferences are considered. Then, we compare the

performance of the EMOA and the proposed DEMOA with respect

to three different performance measures. In detail, we investigate

the overall performance with respect to problem type and fleet size,

the performance with respect to different decision strategies, and

the overall performance gain induced by using multiple vehicles.

Finally, we zoom into dedicated solution instances (and their dy-

namic evolution process) to learn about the behavior of vehicles on

clustered and uniform problem instances.

6.1 Pareto-front approximations and decisions
in the dynamic scenario

The dynamic nature of the problem and online decision making

imply that we do not have a single point in time at which the

algorithm performance can be evaluated. In the beginning only

mandatory customers are available and the tour planning task is

equivalent to (multi-vehicle and open) TSP solving. However, as

dynamic customer requests appear over time, the initially planned

tour(s) must be modified to allow compromises between tour length

and number of visited customers. From this point on, a Pareto-set

of solutions has to be considered. Following the era concept of

decision making, at a dedicated point in time, a compromise is

chosen for realization by a DM. From that time onward, realization

starts and vehicles travel the decided tour. Of course, new dynamic

requests appear over time. These are considered at the end of the

next era and form a set of new compromises. However, that set

of compromises has to consider the already realized partial tour

of the vehicles, which cannot be reverted. Consequently, already

visited (formerly) dynamic customers reduce the upper bound of

unserved customers in compromise sets for future decisions. The

effect of repeated decision making and continuous realization of

decisions is exemplarily shown in Figure 2. The non-dominated

fronts for decisions in all seven eras are shown for a uniform and a

clustered instance, respectively. For visual comparison, the clairvoy-

ant EMOA results are also shown. Horizontal dashed lines denote

the upper bound of unserved dynamic customers in each stage of

decision making. Clearly, in the last era (7, brown points), more

customers have been visited by the traveling vehicles than in the

first era. Thus, the upper bound has decreased. The upper bound

and the range of possible decisions is also depending on the deci-

sion strategy. A greedy strategy, which aims to reduce the number

of unserved customers will favor solutions with many served cus-

tomers and thus influence realization of longer tours. Less greedy

strategies will favor realizations with shorter tours and less visited

customers. This behavior was already observed by Bossek et al. [5]

for a single vehicle. In Figure 3, we confirm an analogous behavior

also for multiple vehicles and our algorithmic approach. Therein,

visualizations of the results of different strategies (0.25, 0.5, and

0.75 priority of the second objective) and multiple runs for different

topologies (uniform and clustered) as well as for different numbers

of vehicles are shown. We find, that decision strategies are reflected

in the final decision locations. The less greedy strategy produces so-

lutions with more unserved customers than very greedy strategies

- independent of the vehicle number.

6.2 Dynamic and clairvoyant performance and
the influence of multiple vehicles

In order to evaluate the approximation quality of the DEMOA,

the dynamic nature of the problem has to be respected. From the

decision maker’s perspective, the last era (and thus the last non-

dominated front) includes all previous decisions and can be com-

pared with the clairvoyant results. However, due to the continu-

ously decreasing upper bounds of unserved customers during the

optimization process (see 6.1), the EMOA approximation covers

a wider range of solutions than the approximated Pareto-front of

the final era. This is considered by our comparison of equivalent

ranges of the DEMOA and EMOA results.

In Figure 4, we compare the Hypervolume indicator [39] of the

DEMOA and EMOA by (1) determining instance-wise the minimal

upper bound for the number of unserved customers (objective f2) in
the last approximated Pareto-front and for all independent runs of

the DEMOA. Then (2), we reduce the solutions of the EMOA to those

below the before determined upper bound for f2. From the union of

the reduced EMOA results and the DEMOA results, we (3) compute

a reference point for Hypervolume computation. Here we compare

both algorithms for the medium greedy 0.5 strategy. We find, that

the DEMOA results outperform the EMOA results for uniform

problem instances with both 50% and 75% dynamic customers. For

clustered instances, performance is in the same range but seemingly

depending on the specific instance topology and dynamic customer

ratio and service request times. However, we can conclude that

the results of the DEMOA for the more realistic dynamic scenario

are not necessarily worse than those of the clairvoyant approach.

While the clairvoyant EMOA approach knows about the request

times of all dynamic customers at t = 0 and considers all potential

customers in compromise generation, the DEMOA optimizes tours

of era i + 1 based on partially realized (and unchangeable) tours

from era i . This often reduces the size of the tour planning problem

significantly and allows to gain very good solutions - some of those

even outperform the EMOA solutions in uniform instances.

Another observation from Figure 4 shows that the aforemen-

tioned advantage of problem complexity reduction due to dynamism

becomes neglectable, when both algorithms consider multiple ve-

hicles. With increasing number of vehicles, the EMOA tends to

outperform the approximation quality of the DEMOA.

While we focused on a single decision strategy in the previous

discussion, Figure 5 investigates multiple strategies together with

tour length properties. Instead of the hypervolume, we now focus on

the tour length objective (f1) and measure the distance of solutions

to the clairvoyant solution. The idea behind this measure is, that (in

the range of the common objective space of DEMOA and EMOA)

usually any number of unvisited dynamic customers is covered
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Figure 4: Boxplots of hypervolume-indicator (lower is better) for all instances split by problem type and fleet size. Results
are shown for the 0.5-strategy for visual clarity, but the omitted results show the same patterns. Hypervolume values are
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Figure 5: Boxplots of the f1-measure (tour length of DEMOA solution minus tour length of best clairvoyant EMOA solution
with the same number of unvisited customers) calculated on basis of all solutions in the last era.

by the approximated Pareto-front. The convergence quality of a

solution set can thus also be expressed by the difference of DEMOA

tour length and EMOA tour length. If DEMOA outperforms EMOA,

the respective value is negative. The equilibrium of solution quality

is denoted by a gray vertical line at 0 in Figure 5.

While we are able to confirm the general observations from

above, we now have detailed insights into the effect of decision

strategies. As a clear trend, we find better tour lengths per instance

topology and dynamism, when greediness in decision making w.r.t.

reduction of number of unserved customers (f2) is increased. This
holds for the single and multiple vehicle case. The reason for this

observation is similar to the argument discussed before. The more

customers have to be serviced, the more complex the tour planning

problem becomes for the clairvoyant EMOA, while more and more

172



GECCO ’20, July 8–12, 2020, Cancún, Mexico Jakob Bossek, Christian Grimme, and Heike Trautmann

Era 1 2 3 4 5 6 7

vehicle: 1

e
ra

: 1
e

ra
: 3

e
ra

: 7

vehicle: 1 vehicle: 2

e
ra

: 1
e

ra
: 3

e
ra

: 7

vehicle: 1 vehicle: 2 vehicle: 3

e
ra

: 1
e

ra
: 3

e
ra

: 7

Era 1 2 3 4 5 6 7

vehicle: 1

e
ra

: 1
e

ra
: 3

e
ra

: 7

vehicle: 1 vehicle: 2

e
ra

: 1
e

ra
: 3

e
ra

: 7

vehicle: 1 vehicle: 2 vehicle: 3

e
ra

: 1
e

ra
: 3

e
ra

: 7

Figure 6: Exemplary tours in eras 1, 3 and 7 (final) with 0.75-strategy for a uniform instance (left) and a clustered instance
(right). For each instance we show the tours the DM picked for a scenario of a single vehicle (left-most column), two vehicles
(columns 2 and 3) and three columns (remaining three columns). Bold edges represent the irreversible tour parts which already
have been realized by the corresponding vehicle (columns) in the respective era (rows).
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Figure 7: Classical dominated hypervolume distributions
(higher is better) of representative instances. The trend is
the same for all 50 benchmark instances.

customers are fixed in the dynamic scenario and do not have to be

considered for tour planning anymore.

A dedicated view on the effect of using multiple vehicles in the

scenario (online and offline) is provided in Figure 7. We find for all

investigated cluster configurations and the uniform distribution of

customers, that multiple vehicles are advantageous regarding clas-

sical hypervolume comparison
5
; the results are statistically highly

significant with respect to Wilcoxon-Mann-Whitney tests at sig-

nificance level α = 0.001 in 100% of the cases, i.e. two vehicles are

significantly better than one and three better than two. At the same

time, we observe that the highest gain in solution quality is associ-

ated with the step from one to two vehicles. By including a third

vehicle, only little is gained. This is probably rooted in the overhead

associated with the distances travelled from the start depot to the

first customer and from the last customer to the end depot. These

distances occur for each vehicle and have to be travelled no matter

how short the remaining tour becomes. Thus, this overhead will

naturally bound the amount of reasonably applicable vehicles.

6.3 Exemplary analysis of vehicle tours
In this paragraph, we briefly investigate representative examples

of generated solutions. Figure 6 details the evolution of tours for a

single vehicle as well as two, and three vehicles for a uniform and

5
Here the reference point is determined for each problem (independent of the number

of vehicles and the strategy). The dominated hypervolume is then calculated for each

algorithm, DM-strategy and number of vehicles.

clustered instance in eras one, three, and 7. In the single vehicle

case, we can just observe the dynamic adaptation of the planned

tour (thin line) towards the realized (and irreversible) tour (bold

lines) over time. In the two and three vehicle scenarios, we can

nicely observe, how the vehicles automatically partition the cus-

tomers space. It is obvious, that no vehicle stays idle. Moreover, we

find, that each vehicle is assigned similar workload. This behav-

ior is partly rooted in the design of our algorithm. As objective f1
minimizes the maximum tour length across all vehicles, selection

pressure forces similar workload to each vehicle. Future research

has to clarify, whether this desirable feature from a real-world ap-

plication perspective is always advantageous from the optimization

perspective.

7 CONCLUSION AND OUTLOOK
In this work, we successfully extended an already high-performing

single-vehicle approach to the more realistic dynamic multiple vehi-

cle scenario and we proposed two measures for comparing DEMOA

quality to the performance of the related clairvoyant EMOA variant.

We find that the algorithmic enhancements ensure a nice distribu-

tion of workload (in terms of tour lengths and number of customers

served) between the involved vehicles without the necessity for

explicitly optimizing for this kind of balance. At the same time and

especially on instances with random uniformly distributed loca-

tions, the DEMOA can even outperform the offline EMOA variant

with full knowledge of request times. Due to concurrent realization

of planned tours, Pareto front approximations of the DEMOA’s de-

cision eras naturally concentrate on constantly shrinking problem

sizes. These reduced problems can then be solved more effectively

than the complete (offline) problem. Also, variations of decision

makers’ preferences and decision chains were investigated. With in-

creasing degree of "greediness", i.e. a stronger focus on minimizing

the number of unserved customers, of course overall tour lengths

increase, both in the single- as well as in the multiple vehicle sce-

nario. The informative and sophisticated visualization approaches

presented here can possibly foster the facilitation of decision pro-

cesses along the DEMOA run and may offer perspectives for future

dynamic, tool-based decision support systems.
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