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ABSTRACT

In practise, it is often desirable to provide the decision-maker with

a rich set of diverse solutions of decent quality instead of just

a single solution. In this paper we study evolutionary diversity

optimization for the knapsack problem (KP). Our goal is to evolve a

population of solutions that all have a profit of at least (1−𝜀) ·𝑂𝑃𝑇 ,

where OPT is the value of an optimal solution. Furthermore, they

should differ in structure with respect to an entropy-based diversity

measure. To this end we propose a simple (𝜇 + 1)-EA with initial

approximate solutions calculated by awell-known FPTAS for the KP.

We investigate the effect of different standard mutation operators

and introduce biased mutation and crossover which puts strong

probability on flipping bits of low and/or high frequency within

the population. An experimental study on different instances and

settings shows that the proposed mutation operators in most cases

perform slightly inferior in the long term, but show strong benefits

if the number of function evaluations is severely limited.
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1 INTRODUCTION

Creating diverse sets of high quality solutions has gained increasing

interest in the evolutionary computation literature. The two promi-

nent terms associated with this research are quality diversity (QD)

algorithms and evolutionary diversity optimization (EDO). Both

areas have almost developed independently but share the same
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goal whereas QD algorithms are mainly developed in the areas of

machine learning and robotics and EDO approaches are focused on

areas such as combinatorial optimization and image design.

Quality diversity algorithms are able to generate many solutions

with a diverse set of behaviors by maintaining a diverse archive

of high performing solutions. In [10], quality diversity is explicitly

encouraged by rewarding diverse behavior and local competition

i.e., individuals are kept that outperform those most similar in the

behavior space. Themain difference between theQD algorithms and

standard evolutionary approaches is the definition of an archive and

the selection process [10ś12]. In recent years QD approaches were

successfully applied in areas such as real world design processes [8]

and robotics [12].

Evolutionary diversity optimization was introduced in [18] and

the explicit aim is to produce a set of high quality solutions with a

high diversity. In contrast to other evolutionary approaches that

maintain diverse solutions in order to prevent premature conver-

gence during the optimization, maximizing diversity allows to learn

more about the optimization problem itself and provides the deci-

sion maker a diverse set of high quality solutions to choose from.

In the context of EDO, most studies have so far focused on diver-

sity measure for creating high quality diverse sets of solutions. Such

approaches map solutions to feature values and try to diversify the

set of solutions with respect to the given features. Studies include

basic approaches on weighted differences in feature values applied

to the creation of diverse sets of TSP instances [7] and images [1].

Furthermore, indicator-based approaches have been studied which

map the set of solutions to one scalar value. The first approach

of this type has used the (star) discrepancy measure [14] which

is widely studied in the area of mathematics [4, 16]. Furthermore,

it has been shown how to apply performance indicators from the

area of evolutionary multi-objective optimization such as the hy-

pervolume indicator (HYP) and inverse generational distance (IGD)

to EDO [15]. The results show that the HYP and IGD are very well

suited for computing high quality diverse sets of TSP instances and

images for a wide range of features.

The investigation of EDO approaches for classical combinatorial

optimization problems has only started very recently. Do et al. [3]

have investigated the use of different diversity measures with re-

spect to the edges included in a TSP tour and designed basic EDO

approaches using these diversity measure to obtain diverse sets of

high quality TSP tours. In the context of submodular optimization,

diversifying greedy sampling approaches and their combination

with EDO have been introduced in [13]. The results in this paper

show that the investigated approaches provably obtain good ap-

proximations for monotone submodular problems and achieve good
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diversity in practice for submodular problems such as influence

maximization in social networks and maximum coverage in graphs.

In this paper, we investigate EDO for the classical knapsack prob-

lem and aim to create high quality diverse sets of solutions where

the solutions differ with respect to the items that they include. So-

lutions are represented as binary strings. The diversity of a set of

solutions is measured in terms of an entropy measure based on the

fraction of number of times an item appears in a given population.

The measure incentives to include components that are less fre-

quent in the current population. We study how different types of

variation operators can be used to create high quality diverse sets

of solutions. Our goal is to create diverse sets of solutions where

all solutions are a good approximation of an optimal solution. The

most basic variation operator when dealing with binary strings are

mutation operators flipping a single bit or standard bit mutation

where each bit is flipped in each mutation step with probability 1/𝑛.

When designing specific operator for EDO, two conflicting goals

have to be taken into account. On the one hand, it is necessary to

construct solutions that meet the given quality threshold set for

high quality solutions. On the other hand, the goal is to construct

solutions that are different the solution contained in the current

set of solutions. We introduce mutation and crossover operators

that allow to diversify the set of solutions by preferring solution

components that are not contained in the current population. In

the case of mutation, we study biased and heavy tailed mutation

operators. In the case of crossover, we propose a method that fo-

cuses on less frequent items greedily. In our experimental study,

we investigate the different operators for a wide range of knapsack

instances, approximation thresholds and population sizes. Our ex-

perimental investigations reveal that the new mutation operators

significantly improve the EDO process if the computational budget

is severely limited, but are slightly outperformed by standard oper-

ators in rather long runs. It also shows that crossover is beneficial

in combination with biased mutation.

The paper is structured as follows. In Section 2 we formally de-

scribe the knapsack problem in the context of EDO. In Section 3

we introduce a simple evolutionary algorithm for diversity op-

timization and different variation operators that favor knapsack

diversity. We present our experimental investigation and discuss

experimental results in Sections 4 and 5. Finally, we finish with

some concluding remarks.

2 THE KNAPSACK PROBLEM AND EDO

In the following, we use the standard notation [𝑛] = {1, . . . , 𝑛} to

express the set of the first 𝑛 positive integers. The problem studied

is the classical zero-one knapsack problem (KP). We are given a

knapsack with finite integer capacity𝑊 > 0 and a set of 𝑛 items.

Each item is associated with a positive integer weight𝑤𝑖 and integer

profit/value 𝑣𝑖 . Each subset 𝑠 ⊂ [𝑛] is called a solution/packing. We

identify a packing by means of a binary vector 𝑥 ∈ {0, 1}𝑛 where

𝑥𝑖 = 1 means that the 𝑖-th item is packed (it is active) while 𝑥𝑖 = 0

indicates that it is not packed (inactive). We write

𝑤 (𝑥) =

𝑛
∑

𝑖=1

𝑥𝑖𝑤𝑖 and 𝑣 (𝑥) =

𝑛
∑

𝑖=1

𝑥𝑖𝑣𝑖

for the total weight and value respectively. A solution is feasible if

its total weight does not exceed the capacity. Let

S = {𝑥 | 𝑥 ∈ {0, 1}𝑛 ∧𝑤 (𝑥) ≤𝑊 }

be the set of feasible solutions. The goal in the optimization version

of the problem is to find a feasible solution 𝑥∗ ∈ S with maximum

profit 𝑣 (𝑥∗).

The knapsack problem is a well-studied classical NP-hard opti-

mization problem. However, it is weakly NP-hard in the sense that

it admits fully polynomial time approximation schemes (FPTAS),

i.e., algorithms that for an arbitrary input instance and a parameter

0 < 𝜀 < 1 output a solution 𝑥 ∈ S with

𝑣 (𝑥) ≥ (1 − 𝜀) ·𝑂𝑃𝑇

where 𝑂𝑃𝑇 is the unknown optimal value. The classical textbook

FPTAS runs in𝑂 (𝑛3/𝜀) which is polynomial both in 𝑛 and 1/𝜀 [19].

Evolutionary diversity optimization (EDO) aims to evolve a set of

minimum-quality solutions that differ in structure. More precisely,

in the context of the KP, given a quality threshold 𝑣𝑚𝑖𝑛 the goal is

to evolve a population 𝑃 of size 𝜇 = |𝑃 | of packings such that (1) for

all 𝑥 ∈ 𝑃 it holds that 𝑤 (𝑥) ≤ 𝑊 and 𝑣 (𝑥) ≥ 𝑣𝑚𝑖𝑛 and (2) 𝑃 is of

maximum diversity with respect to a diversity measure. Denote by

ℎ(𝑖) := |{𝑥 ∈ 𝑃 | 𝑥𝑖 = 1}|

the absolute frequency of item 𝑖 in the population. Then 𝑓 (𝑖) :=
ℎ (𝑖)
𝜇

for 1 ≤ 𝑖 ≤ 𝑛 is the share of individuals in the population that

contain item 𝑖 . We aim to maximize the entropy measure

𝐻 (𝑃) := −

𝑛
∑

𝑖=1

𝑓 (𝑖) · log 𝑓 (𝑖) .

Note that the contribution of an item that is not included in neither

packing is zero and so is the contribution of an item that is packed

in all solutions. The entropy measure guides the EA to include less

frequent items and drop very frequent ones.

3 EVOLUTIONARY APPROACH

By running the classical textbook FPTAS for the knapsack prob-

lem [19] with approximation parameter 𝜖/2 we obtain a packing

𝑥 ′ which is at most a factor of (1 − 𝜀/2) less than the value of an

optimal solution denoted as OPT. This provides a good starting

point to seed the population of an EDO-focused evolutionary algo-

rithm and use 𝑣 (𝑥 ′) as the minimum quality threshold. However,

in general we do not know where exactly in [(1− 𝜀/2) ·𝑂𝑃𝑇,𝑂𝑃𝑇 ]

the solution 𝑣 (𝑥 ′) is located; it may be very close to 𝑂𝑃𝑇 . This is a

bad setup for EDO as there may be a unique optimum or the set of

global optima may be very small leaving literally no chance to the

EA to evolve a diverse population in a meaningful way. Therefore,

the diversifying EA requires all solutions 𝑥 in the population 𝑃 to

admit

𝑣 (𝑥) ≥ (1 − 𝜀/2) · 𝑣 (𝑥 ′) .

This means that we allow it to deviate from the approximate so-

lution quality by another multiplicative factor of (1 − 𝜀/2). The

choice 𝜀/2 leads to the following quality guarantee of all solutions
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Algorithm 1: (𝜇 + 1)-EA for EDO.

Input : Initial solution 𝑥 ′, 0 < 𝜀 < 1, population size 𝜇,

crossover probability 𝑝𝑐 ∈ [0, 1], repair (on/off)

1 Set 𝑣𝑚𝑖𝑛 to (1 − 𝜀/2) · 𝑣 (𝑥 ′);

2 Initialize 𝑃 with 𝜇 copies of 𝑥 ′;

3 while termination condition not met do

4 With probability 𝑝𝑐 generate 𝑥 from two random

individuals 𝑥1, 𝑥2 from 𝑃 by crossover (see

Algorithm 3), otherwise sample 𝑥 randomly from 𝑃 ;

5 Modify 𝑥 by mutation;

6 if repair is on then

7 Call Algorithm 2 passing 𝑥 , 𝑣𝑚𝑖𝑛 and𝑊 ;

8 if 𝑤 (𝑥) ≤𝑊 ∧ 𝑣 (𝑥) ≥ 𝑣𝑚𝑖𝑛 then

9 Add 𝑥 to 𝑃 ;

10 if |𝑃 | = 𝜇 + 1 then

11 Remove 𝑦 ∈ 𝑃 with 𝑦 = argmax𝑦′∈𝑃 𝐻 (𝑃 \ {𝑦′});

12 return 𝑃 ;

in the final population:

𝑣 (𝑥) ≥ (1 − 𝜀/2) · 𝑣 (𝑥 ′)

≥ (1 − 𝜀/2) · (1 − 𝜀/2) ·𝑂𝑃𝑇

= (1 − 𝜀/2)2 ·𝑂𝑃𝑇

≥ (1 − 𝜀) ·𝑂𝑃𝑇 .

Here, the last transformation is due to Bernoulli’s inequality (1 +

𝑥)𝑛 ≥ 1+𝑛𝑥 for 𝑥 ≥ −1 and the fact that −𝜀/2 ≥ 1 for all reasonable

values of 𝜀.

We now introduce a simple evolutionary algorithm for diversity

optimization. The algorithm is a classical (𝜇 + 1)-EA outlined in

Algorithm 1. The algorithm’s initial population is seeded with 𝜇

copies of a (1 − 𝜀/2)-approximate solution 𝑥 ′ calculated by the

FPTAS as discussed above. We set 𝑣𝑚𝑖𝑛 = (1 − 𝜀/2) · 𝑣 (𝑥 ′) (line 2)

and in the course of optimization reject solutions that violate the

capacity constraint𝑊 or do not meet the minimum quality 𝑣𝑚𝑖𝑛 .

This way the algorithm ensures all solutions to be at most up to a

multiplicative factor of (1 − 𝜀) away from the optimum. Note that

after initialization all individuals are feasible. In one iteration of the

EA, exactly one individual 𝑥 is produced either by crossover applied

to two random individuals 𝑥1, 𝑥2 ∈ 𝑃 with a probability 𝑝𝑐 ∈ [0, 1]

or by copying a random individual from 𝑃 with inverse probability

(1−𝑝𝑐 ). Next 𝑥 undergoes mutation followed by a repair procedure

which tries to re-establish feasibility of 𝑥 if it is infeasible. After-

wards, 𝑥 is added to the population if neither the knapsack capacity

nor the least-quality is violated. Finally, to ensure a constant popu-

lation size 𝜇, the algorithm drops 𝑦 = argmax𝑦′∈𝑃 𝐻 (𝑃 \ {𝑦′}), i.e.,

the individual that leads to the maximum population entropy when

dropped in the current iteration.1

We study Algorithm 1 with different variations operators dis-

cussed in detail in the following.

1The survival selection is the computationally most demanding operation in this
algorithm with a runtime of𝑂 (𝑛𝜇) per iterations. It can be replaced by a simplified
themewhere the added packing𝑥 competes against (one of ) its parent(s) only. However,
in this paper we aim for the maximal possible increase in each iteration.

3.1 Mutation operators

Mutation is key to exploration of the search space. We study five

different mutation operators in total, three of which are classical op-

erators from the literature and the other two being tailored towards

diversity. The classical operators are:

Standard bit-flip (BF). This is the unbiased baseline. Each bit is

flipped independently with mutation probability 𝑝 = 1/𝑛. Note that

in expectation exactly one bit is flipped and there is a quite high

probability of (1 − 1/𝑛)𝑛 ≈ 𝑒−1 to leave all bits untouched. For

EDO it seems advantageous to flip more than one bit with higher

probability, e.g., in order to activate a previously inactive item and

deactivate an active item. The probability to flip multiple bits is

highly increased for the following two mutation operators.

Poisson bit-flip (PBF). A value 𝑘 = 1 + Pois(1) is sampled first and

bits at 𝑘 randomly selected positions are flipped. Here, Pois(1) de-

scribes a random integer value sampled from a Poisson-distribution

with rate parameter 𝜆 = 1. Since the expected value of a Poisson-

distribution corresponds to the reciprocal of its rate, in expectation

this operator flips two bits and in any case flips at least one bit.

Heavy-tailed bit-flip (HTBF). This mutation operator was pro-

posed in Friedrich et al. [6] and was shown to perform excellently in

theory and experimental evaluations. It is particularly suited to over-

come fitness plateaus. The operator works as follows: the mutation

rate is sampled randomly in each mutation following a power-law

distribution with exponent 𝛽 > 1. I.e., sample 𝜃 ∈ [1, . . . , 𝑛/2] from

the 𝐷
𝛽

𝑛/2
-distribution such that

Prob(sample 𝜃 ) =
(

𝐶
𝛽

𝑛/2

)−1
𝜃−𝛽

for all 𝜃 ∈ [1, . . . , 𝑛/2] where 𝐶
𝛽

𝑛/2
=

∑𝑛/2
𝑖=1 𝑖

−𝛽 . Given 𝜃 , each bit is

flipped independently with probability 𝑝 = 𝜃/𝑛.

We expect PBF and HTBF to outperform BF in EDO. However,

although PBF and HTBF may flip multiple bits and thus increase

entropy faster, they may flip the wrong bits, e.g., mostly inactive

or mostly active bits which likely leads to mutants being infeasible

violating one of the two constraints. We therefore propose two mu-

tation operators that take into account the current item frequencies

ℎ(𝑖), 1 ≤ 𝑖 ≤ 𝑛 and work with a strong bias towards more diverse

packings potentially.

EDO biased bit-flip 1 (EDO-BBF1). Here we use the idea of asym-

metric mutation probabilities [5]. We put higher probability on

activating items that are inactive, but with low frequency. Analo-

gously, we increase the probability to deactivate frequent items. To

be more precise the probability 𝑝𝑖 to flip the 𝑖th item is given by

𝑝𝑖 =

{

𝜇−ℎ𝑖
2𝑛 if 𝑥𝑖 = 0 and ℎ𝑖 ≤

𝜇
2

ℎ𝑖
2𝑛 if 𝑥𝑖 = 1 and ℎ𝑖 >

𝜇
2 .

For instance, if 𝜇 = 50 and 𝑛 = 100, after the initialization of

Algorithm 1, we have ℎ(𝑖) = 𝜇 for items that are packed in the

FPTAS-solution and ℎ(𝑖) = 0 otherwise. Therefore, both active and

inactive items would have a very high probability of 1/4 to flip in

the first iteration. This operator is rather extreme and due to the

described effect we expect it to achieve reasonable diversity values

in short time. However, note that strong bias may also have the
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Algorithm 2: EDO-focused repair operator.

Input :Solution 𝑥 , minimal quality 𝑣𝑚𝑖𝑛 , capacity𝑊

1 if 𝑤 (𝑥) >𝑊 then

2 Drop items from 𝑥 in decreasing order of frequency ℎ(𝑖);

3 if 𝑣 (𝑥) < 𝑣𝑚𝑖𝑛 then

4 Add items to 𝑥 in increasing order of frequency ℎ(𝑖);

5 return 𝑥 ;

Algorithm 3: EDO-focused crossover.

Input :Parents 𝑥1, 𝑥2, minimal quality 𝑣𝑚𝑖𝑛

1 Set 𝑥𝑖 = 1 if 𝑥1𝑖 = 1 ∧ 𝑥2𝑖 = 1 and 𝑥𝑖 = 0 otherwise;

2 if 𝑣 (𝑥) < 𝑣𝑚𝑖𝑛 then

3 Add items to 𝑥 in increasing order of frequency ℎ(𝑖);

4 return 𝑥 ;

reverse effect if the subset of feasible solutions is small in size and

flipping many bits is likely to generate infeasible solutions.

EDO biased bit-flip 2 (EDO-BBF2). This operator aims to balance

bit-flips of active and inactive items, but does not rely on the fre-

quencies and is less łextremež than EDO-BBF1. To this end let

𝑋 𝑗 = {𝑖 ∈ [𝑛] | 𝑥𝑖 = 𝑗}, 𝑗 = 0, 1 be the set of (in)active items in 𝑥 .

The algorithm samples two numbers 𝑘1, 𝑘2 from a 1+Pois(1). Next,

it samples min{𝑘0, |𝑋0 |} bit positions from 𝑋0 and min{𝑘1, |𝑋1 |}

bit positions from 𝑋1 for flipping. The minimum is necessary as

in certain situations the number of zero- or one-bits may be lower

than the sampled number. Note that 𝑘1 + 𝑘2 ≥ 2, i.e., at least two

bits are flipped.

3.2 EDO-focused repair operator

Mutated individuals may be infeasible if either the allowed capacity

limit𝑊 is exceeded or the minimum quality is not achieved. It is

plausible to assume that this effect appears more often if 𝜀 is low and

in consequence there is little flexibility to deviate from the initial

solutions’ quality. To account for this problem we propose a simple

repair operator outlined in Algorithm 2. The repair operator first

sorts the items in increasing order of their frequencies ℎ(𝑖), 𝑖 ∈ [𝑛].

It then first traverses the items in reverse order of item frequency if

the knapsack capacity is violated. Inactive items 𝑖 ∈ [𝑛], i.e. where

𝑥𝑖 = 0, are ignored, while active items are flipped until𝑤 (𝑥) ≤𝑊 .

In a second phase, given the quality threshold is violated, the items

are traversed in increasing order of frequency, thus activating the

least frequent non-active item and so on until the quality adheres

to the threshold. Certainly, this approach cannot guarantee to be

successful. E.g, the bias towards item frequency may lead to effects

where the first phase manages to fix the capacity overshooting,

but in the subsequent phase may add a heavy item that does not

occur often in the population leading to a repeated violation of the

capacity constraint. This issue could be partly fixed by checking

the other constraint before activating (in phase one) or deactivat-

ing (in phase two). However, preliminary experiments showed no

noticeable difference in the behavior. It should be noted that the

repair operator runtime is dominated by sorting the items. We can

leverage the fact that item frequencies are integer values in the

interval [0, . . . , 𝜇] and adopt a linear-time sorting algorithm like

counting-sort [2]. Thus, the operator can be implemented efficiently

in time 𝑂 (𝑛 + 𝜇) = 𝑂 (max{𝑛, 𝜇}) which is 𝑂 (𝑛) if 𝜇 = 𝑂 (𝑛).

3.3 EDO-focused crossover

Our crossover operator expects two parents 𝑥1, 𝑥2 and produces one

child 𝑥 (see Algorithm 3). It first transfers all items common to both

parents, i.e. set𝑥𝑖 = 1 if both𝑥1𝑖 = 1 and𝑦2𝑖 = 1. The rationale behind

this is to keep important items that may be necessary to include

into every single feasible solution due to their high efficiency (high

profit and low weight). After this step the number of active items

in 𝑥 is less than or equal to the number of active items in 𝑥1 or

𝑥2 respectively. Moreover,𝑤 (𝑥) ≤ min{𝑤 (𝑥1),𝑤 (𝑥2)} and hence

the capacity limit is certainly not violated. In a second step the

algorithm uses phase two of the repair operator (cf. Algorithm 2) to

fill the knapsack with further unpacked items in increasing order

of frequency in the population. The operator also has a worst case

complexity of 𝑂 (𝑛 + 𝜇).

4 EXPERIMENTAL SETUP

We now study the proposed evolutionary approaches on a set of

benchmark instances. We first describe the experimental setup and

discuss results afterwards.

Due to the lack of real-world knapsack instanceswe consider four

types of benchmark instances with each 𝑛 = 100 items frequently

used for benchmarking [9, 17]. For strongly correlated instances

(scorr) the weight is sampled uniformly at random from {1, . . . , 𝑅}

and for the profits 𝑝𝑖 = 𝑤𝑖 +𝑅/10 holds where 𝑅 = 10 000. Inversely

strongly correlated instances (invscorr) are similar. Here, profits are

sampled from {1, . . . , 𝑅} and weights correspond to profits plus

𝑅/10. For uncorrelated instances both weights and profits are sam-

pled from {1, . . . , 𝑅} at random, i.e., there is no correlation at all.

Eventually, for instances of type uniform similar weights (usw) the

weights are distributed in {100 000, . . . , 100 100} and profits are lo-

cated in {1, . . . , 1 000}. For each instance we consider 𝐷 ∈ {2, 5, 10}

and set the knapsack capacity to𝑊 =
𝐷
11 ·

∑𝑛
𝑖=1𝑤𝑖 . Intuitively, the

closer𝑊 is to half the weight of all items, the more flexibility one

would expect with respect to item packing while very low and very

high values are rather inflexible. In particular for 𝐷 = 10 most

items fit into the knapsack and the space of feasible solution may

be small. We study 𝜇 ∈ {25, 50, 100, 200} to cover the cases where

the population size is less, equal to and larger than the instance

size. In addition, we consider 𝜀 ∈ {0.1, 0.2, 0.5, 0.9} to define the

quality threshold. This parameter, in interaction with 𝐷 (i.e., im-

plicitly𝑊 ), should be crucial for the maximally possible population

diversity as the combination (𝜀, 𝐷) might strongly limit the number

of feasible packings. Moreover, we study the five different mutation

operators (BF, PBF, HTBF, EDO-BBF1, EDO-BBF2), crossover (off,

on with probability 𝑝𝑐 = 0.8) and repair of infeasible solutions

(on/off). We run the (𝜇 + 1)-EA for each combination of the cross-

product of all parameters (4 608 in total) ten times independently.

In each experiment the population is initialized with 𝜇 copies of

an (1 − 𝜀/2)-approximate solution calculated by the FPTAS. The

EA is terminated after 𝜇𝑛 iterations. In the following we often use
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Table 1: Mean (mean) and standard deviation (std) of mean entropy. Highest mean values are highlighted in bold face . Algo-

rithms are numbered (see second row). In the stat-column a number 𝑋 means that the algorithm in the respective column has

significantly higher entropy than 𝑋 while 𝑋 − 𝑌 means that it is superior to all algorithms 𝑋 . . . 𝑌 .

Standard Biased

BF (1) PBF (2) HTBF (3) EDO-BBF1 (4) EDO-BBF2 (5)

𝐷 𝜇 𝜀 mean std stat mean std stat mean std stat mean std stat mean std stat

0.1 36.74 0.02 4-5 36.77 0.00 1,3-5 36.76 0.01 1,4-5 36.36 0.11 36.40 0.01
0.5 36.75 0.01 4-5 36.77 0.00 1,3-5 36.76 0.00 1,4-5 36.38 0.10 36.40 0.0125
0.9 36.74 0.02 4-5 36.77 0.00 1,3-5 36.77 0.00 1,4-5 36.42 0.13 36.40 0.01

0.1 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.58 0.02 36.71 0.04 4
0.5 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.61 0.02 36.73 0.03 4

2

100
0.9 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.60 0.02 36.72 0.03 4

0.1 36.06 0.02 4-5 36.10 0.01 1,3-5 36.09 0.01 1,4-5 35.85 0.03 35.91 0.04 4
0.5 36.75 0.01 4-5 36.77 0.00 1,3-5 36.76 0.00 1,4-5 36.11 0.08 36.21 0.13 425
0.9 36.75 0.01 4-5 36.77 0.00 1,3-5 36.76 0.01 1,4-5 36.08 0.08 36.28 0.12 4

0.1 36.17 0.00 4-5 36.17 0.00 1,4-5 36.17 0.00 1,4-5 35.80 0.02 36.15 0.01 4
0.5 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 35.87 0.02 36.66 0.06 4

5

100
0.9 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 35.86 0.04 36.68 0.05 4

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 35.85 0.02 4-5 35.88 0.01 1,3-5 35.86 0.01 4-5 35.68 0.05 35.76 0.02 425
0.9 36.77 0.01 3-5 36.77 0.00 1,3-5 36.76 0.00 4-5 36.17 0.10 36.23 0.15

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 35.95 0.00 4 35.95 0.00 1,3-5 35.95 0.00 1,4-5 35.58 0.02 35.94 0.01 4

sc
o
rr

10

100
0.9 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.63 0.06 36.70 0.04 4

0.1 36.26 0.01 4-5 36.29 0.01 1,3-5 36.28 0.01 1,4-5 36.08 0.07 36.14 0.04 4
0.5 36.75 0.01 4-5 36.77 0.00 1,3-5 36.76 0.00 1,4-5 36.40 0.11 36.73 0.01 425
0.9 36.74 0.01 4 36.77 0.00 1,3-5 36.76 0.00 1,4-5 36.39 0.04 36.74 0.01 4

0.1 36.34 0.00 4-5 36.34 0.00 1,3-5 36.34 0.00 4-5 36.00 0.04 36.33 0.00 4
0.5 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.61 0.02 36.79 0.00 4

2

100
0.9 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.63 0.02 36.79 0.00 4

0.1 25.42 0.16 4 25.65 0.13 1,3-4 25.48 0.12 4 24.23 0.20 25.63 0.09 1,3-4
0.5 36.68 0.01 4-5 36.70 0.00 1,3-5 36.69 0.01 1,4-5 36.02 0.09 36.10 0.09 425
0.9 36.75 0.01 4-5 36.77 0.00 1,3-5 36.76 0.00 1,4-5 36.15 0.03 36.15 0.08

0.1 26.03 0.06 4 26.14 0.03 1,3-5 26.09 0.05 1,4 0.00 0.00 26.09 0.03 1,4
0.5 36.75 0.00 3-5 36.75 0.00 1,3-5 36.75 0.00 4-5 35.56 0.03 36.63 0.02 4

5

100
0.9 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 35.60 0.05 36.65 0.06 4

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 35.15 0.01 4-5 35.17 0.01 1,3-5 35.15 0.01 4-5 35.07 0.01 35.10 0.02 425
0.9 36.76 0.01 4-5 36.77 0.00 1,3-5 36.76 0.00 4-5 36.15 0.14 36.16 0.08

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 35.22 0.00 4-5 35.23 0.00 1,3-5 35.22 0.00 4-5 35.00 0.02 35.21 0.00 4

u
n
co
rr

10

100
0.9 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.60 0.04 36.65 0.06

0.1 36.76 0.01 4-5 36.77 0.01 1,3-5 36.76 0.01 4-5 36.57 0.07 5 36.49 0.03
0.5 36.75 0.01 4-5 36.77 0.00 1,3-5 36.76 0.00 1,4-5 36.50 0.07 5 33.74 0.2725
0.9 36.75 0.02 4-5 36.77 0.00 1,3-5 36.77 0.00 1,4-5 36.50 0.08 5 30.75 0.00

0.1 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.68 0.01 36.75 0.01 4
0.5 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.68 0.01 5 34.75 0.35

2

100
0.9 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.69 0.01 5 30.86 0.00

0.1 29.60 0.06 4-5 29.68 0.07 1,4-5 29.67 0.04 1,4-5 29.08 0.14 29.34 0.08 4
0.5 36.73 0.01 4-5 36.76 0.01 1,3-5 36.75 0.00 1,4-5 35.97 0.10 5 35.89 0.0125
0.9 36.74 0.01 4-5 36.77 0.00 1,3-5 36.76 0.00 1,4-5 36.06 0.13 5 35.89 0.00

0.1 29.93 0.02 4-5 29.96 0.01 1,3-5 29.95 0.02 4-5 0.00 0.00 29.78 0.02 4
0.5 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 35.39 0.08 35.93 0.00 4

5

100
0.9 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 35.41 0.04 35.93 0.00 4

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 35.20 0.02 4-5 35.23 0.01 1,3-5 35.21 0.02 1,4-5 35.10 0.03 5 34.86 0.0125
0.9 36.76 0.01 4-5 36.77 0.00 1,3-5 36.76 0.00 4-5 36.06 0.08 5 34.90 0.02

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 35.30 0.01 4-5 35.30 0.00 3-5 35.30 0.00 4-5 34.93 0.01 34.94 0.00 4

u
sw

10

100
0.9 36.79 0.00 4-5 36.79 0.00 4-5 36.79 0.00 4-5 36.53 0.08 5 34.95 0.00

the term setup to refer to a tuple (instance type, 𝐷, 𝜇, 𝜀) describing

a combination of experimental parameters.

Our implementation is based on Python3. Code, evaluation scripts

and data are available in a public GitHub repository for the sake of

reproducibility.2

5 EXPERIMENTAL RESULTS

The section first considers the setting with a generous budget of 𝜇𝑛

function evaluations and discusses result for a restricted budget of

only 𝜇 iterations afterwards. Eventually the effect of crossover is

investigated.

2Code and data: https://github.com/jakobbossek/GECCO2021-knapsack-diversity.

5.1 Benchmark of mutation operators with
generous budget

We first compare the entropy values of the evolved populations of

(𝜇 +1)-EA with mutation only and activated repair. Results without

repair show the exact same trends; we will come back to repair

later. Table 1 shows the mean entropy and standard deviation for

all five mutation operators separated by all considered parameters.

We omitted results for 𝜇 ∈ {50, 200}, 𝜀 ∈ {0.2} and instance type

invscorr (almost identical to scorr) due to space limitations. The

omitted data though does not reveal any further insights. We first

observe that in general, with increasing 𝜀, the achieved entropy

values tend to increase given a fixed value of 𝐷 . This was expected

since with 𝜀 → 1 the number of feasible solutions, i.e., such so-

lutions that do not violate the minimal quality criterion, grows

monotonically. However, this effect is far less pronounced for (in-

versely) strongly correlated instances which can be attributed to
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(scorr, 2, 25, 0.90) (uncorr, 5, 25, 0.10) (usw, 5, 25, 0.10)

(invscorr, 10, 25, 0.50) (invscorr, 2, 25, 0.10) (scorr, 2, 100, 0.50)
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Figure 1: Distribution of population diversity (entropy) for

six representative setups with and without repair operator.

the strong correlation. Another interesting observation concerns

the standard deviation. In fact, for PBF and HTBF in 90% of the

cases the standard deviation is below 0.006 with 0.132 and 0.125

being the maximum values. Tailored operators are less robust, but

even here the standard deviation is quite low (at most 0.271 for

EDO-BBF1, and 1.43 for EDO-BBF2). The last general observation

is due to runs that can be categorized as łfailedž. Here, either all

algorithms fail which occurs for 𝐷 = 10 and 𝜀 ≤ 0.2 (here both

parameters in combination hinder the algorithms from generating

different feasible solutions) or (a part of) the biased mutation fails

due to its working principles being inappropriate for the special

setting. Note that EDO-BBF1 always fails for population size larger

than 𝑛 as it is designed for 𝜇 < 𝑛.

Besides the general observations we see a clear picture. After

𝜇𝑛 iterations standard mutation operators (BF, PBF and HTBF) are

superior with respect to mean entropy. These results are statisti-

cally supported by the results of pairwise Wilcoxon-Mann-Whitney

tests at significance level 𝛼 = 0.05 (see stat columns in the table)

with Bonferroni-Holm correction to account for multiple-testing of

samples. However, note that these results can be explained by the

very low standard deviation. In fact, comparing the plain entropy

numbers, all operators perform reasonably well in the majority of

cases. Deviations from the maximum achieved mean entropy per

setup are within 5.81% in 99% of the cases leaving apart some patho-

logical cases where biased mutation does not work at all (recall that

EDO-BBF1 does not work if 𝜇 > 𝑛). All in all, flipping multiple bits

(with increased probability) in an unbiased way seems beneficial

in the long term as PBF mutation mostly performs best.

The effect of active versus inactive repair is mostly minuscule.

The overall observations drawn from the data with active repair

directly carry over to the ones without. We therefore refrain from

showing a page-filling table and instead visualize distributions for

representative setups in Figure 1. This can be attributed to slightly

more individuals being feasible after mutation.

5.2 Benchmark of mutation operators with
restricted budget

We now turn our focus towards a severely restricted budget of func-

tion evaluations of just 𝜇. Note that the total budget considered in

the previous investigation was based on a budget of 𝜇𝑛 evaluations

which is by a factor of 𝑛 (here 𝑛 = 100) higher. As a performance in-

dicator we consider the percentage deviation (lower is better) from
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Figure 2: Distribution of the normalized distance to the

maximum entropy achieved over all runs on a different in-

stances after 𝜇𝑛 iterations (actual budget for EA) and a se-

verely restricted budget of only 𝜇 iterations. Data is split by

instance type (rows) and 𝜇 (columns).
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Figure 3: Trajectories of the population diversity in the

course of iterations with focus on severely reduced budget.

The plot headers read as follows: (type, 𝐷, 𝜀, 𝜇).

the maximum achieved population diversity over all runs of all

algorithms on each setup (type, 𝜇, 𝜀, 𝐷). Figure 2 shows boxplots of

the percent deviation from the maximum diversity split by instance

type (scorr, uncorr and usw) and population size 𝜇 ∈ {25, 50, 100}.

In order to save precious space, we do not further split by 𝜀 and 𝐷 .

However, the trends observed from Figure 2 are stable across all

considered setups. We observe a very clear trend/ranking respec-

tively. Considering the unbiased operators ś with respect to median

deviation, BF is always outperformed by PBF which in turn is al-

ways outperformed by HTBF in the setting with strongly reduced

budget. Switching to he biased operators both are always superior

to HTBF with EDO-BBF1 outperforming EDO-BBF2 consistently

and statistically significant. EDO-BBF1 achieves median deviations

of less then 32% for 𝜇 = 25, less then 12.5% for 𝜇 = 50 and even

values below 10% for 𝜇 = 100. This means there is clear trend to-

wards better short-term performance with 𝜇 approaching 𝑛. Biased

mutation also shows lower variance. In particular for (inversely)

strongly correlated instances the boxplots of EDO-BBF1 get very

narrow. In total, EDO-BBF1 show the best median performance in

80.56% of the cases, EDO-BBF2 is placed second with 12.50% and

HTBF in 6.94%; BF and PBF score first in none of the cases. Table 2

gives a detailed and less aggregated overview in terms of numbers
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Table 2: Mean (mean) and standard deviation (std) of mean entropy. Highest mean values are highlighted in bold face . Algo-

rithms are numbered (see second row).

Standard Biased

BF (1) PBF (2) HTBF (3) EDO-BBF1 (4) EDO-BBF2 (5)

𝐷 𝜇 𝜀 mean std stat mean std stat mean std stat mean std stat mean std stat

0.1 2.98 0.59 5.60 0.86 1 13.69 4.56 1-2 23.24 0.82 1-3,5 16.61 1.42 1-3
0.5 2.84 0.49 5.64 0.57 1 12.40 2.84 1-2 23.43 1.29 1-3,5 16.82 1.79 1-325
0.9 2.93 0.75 5.32 0.23 1 13.10 4.03 1-2 23.36 0.89 1-3,5 16.64 1.73 1-3

0.1 4.06 0.71 7.34 0.45 1 15.12 1.80 1-2 36.37 0.07 1-3,5 19.28 1.23 1-3
0.5 3.86 0.62 7.43 0.26 1 15.28 2.58 1-2 36.45 0.06 1-3,5 19.00 0.89 1-3

2

100
0.9 4.17 0.60 7.27 0.51 1 14.88 2.37 1-2 36.42 0.06 1-3,5 18.66 1.00 1-3

0.1 2.33 0.58 4.85 0.76 1 10.75 2.19 1-2 21.83 1.96 1-3,5 17.49 1.24 1-3
0.5 2.27 0.57 4.49 0.70 1 12.36 3.50 1-2 21.03 1.22 1-3,5 17.19 1.73 1-325
0.9 2.15 0.44 4.06 0.42 1 10.04 3.21 1-2 20.82 0.95 1-3,5 17.70 1.13 1-3

0.1 3.05 0.37 5.59 0.37 1 13.00 2.23 1-2 35.41 0.06 1-3,5 18.72 1.19 1-3
0.5 3.07 0.46 5.59 0.41 1 12.94 2.00 1-2 35.46 0.08 1-3,5 19.33 1.47 1-3

5

100
0.9 2.95 0.43 5.58 0.29 1 12.36 1.70 1-2 35.48 0.07 1-3,5 18.58 1.16 1-3

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 31.65 0.28 31.97 0.44 32.54 0.25 1-2 34.34 0.47 1-3 34.65 0.12 1-325
0.9 31.66 0.33 31.84 0.32 32.28 0.54 1-2 33.77 0.41 1-3 34.57 0.28 1-4

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 31.92 0.17 32.35 0.23 1 33.10 0.26 1-2 35.15 0.11 1-3,5 34.92 0.06 1-3

sc
o
rr

10

100
0.9 31.94 0.24 32.21 0.21 1 32.88 0.36 1-2 36.25 0.08 1-3,5 34.96 0.04 1-3

0.1 3.08 0.98 6.27 0.90 1 14.06 5.11 1-2 24.55 1.52 1-3,5 17.44 2.12 1-3
0.5 3.30 0.33 6.08 0.50 1 12.49 2.50 1-2 24.87 1.48 1-3,5 17.07 1.57 1-325
0.9 3.52 1.06 6.32 1.08 1 11.95 2.08 1-2 24.71 0.60 1-3,5 16.98 1.05 1-3

0.1 4.27 0.53 7.26 0.38 1 16.16 1.48 1-2 30.67 0.96 1-3,5 19.95 0.83 1-3
0.5 4.08 0.61 7.61 0.36 1 16.30 2.47 1-2 36.44 0.07 1-3,5 19.77 0.47 1-3

2

100
0.9 4.30 0.48 7.44 0.49 1 15.08 2.50 1-2 36.49 0.06 1-3,5 19.59 1.06 1-3

0.1 2.55 0.57 4.52 0.71 1 6.87 1.24 1-2 10.93 1.53 1-3 12.47 1.11 1-4
0.5 2.31 0.65 4.98 0.83 1 10.22 3.33 1-2 23.03 1.20 1-3,5 16.81 1.50 1-325
0.9 2.29 0.54 4.78 0.44 1 11.24 3.96 1-2 22.64 1.96 1-3,5 16.06 1.53 1-3

0.1 3.41 0.48 4 6.20 0.51 1,4 7.11 0.53 1-2,4 0.00 0.00 13.46 0.75 1-4
0.5 3.29 0.20 5.97 0.46 1 14.26 3.02 1-2 33.84 0.37 1-3,5 17.67 0.62 1-3

5

100
0.9 3.19 0.41 6.01 0.50 1 12.61 1.47 1-2 35.35 0.08 1-3,5 17.48 0.87 1-3

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 14.53 9.71 5 16.95 9.09 5 18.97 9.73 5 19.79 6.45 5 1.18 3.7225
0.9 30.91 0.54 31.41 0.28 1 32.28 0.64 1-2 33.70 0.49 1-3 34.32 0.53 1-4

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 13.64 7.46 5 14.95 9.01 5 22.50 3.23 1-2,4-5 13.43 1.69 5 0.22 0.47

u
n
co
rr

10

100
0.9 31.24 0.26 31.75 0.23 1 32.65 0.28 1-2 36.21 0.10 1-3,5 34.90 0.09 1-3

0.1 3.43 0.60 6.51 1.05 1 16.62 4.57 1-2 26.55 1.36 1-3,5 21.41 2.05 1-3
0.5 3.42 0.78 6.28 0.64 1 14.20 3.47 1-2 26.06 0.94 1-3,5 16.78 1.18 1-225
0.9 3.69 0.68 6.78 0.65 1 12.69 3.33 1-2 25.63 1.03 1-3,5 16.94 1.66 1-3

0.1 4.89 0.32 8.62 0.59 1 17.25 1.89 1-2 36.54 0.02 1-3,5 24.25 0.76 1-3
0.5 5.30 0.41 8.44 0.55 1 18.26 2.00 1-2 36.55 0.04 1-3,5 19.51 0.79 1-2

2

100
0.9 5.02 0.31 9.03 0.87 1 18.48 2.23 1-2 36.57 0.04 1-3,5 19.06 0.63 1-2

0.1 2.48 0.71 5.80 0.89 1 9.61 1.82 1-2 17.26 0.78 1-3,5 16.11 1.55 1-3
0.5 2.72 0.72 5.67 0.61 1 13.09 2.68 1-2 23.81 1.30 1-3,5 16.79 1.23 1-325
0.9 2.76 0.46 5.48 0.68 1 13.82 3.70 1-2 24.05 1.60 1-3,5 15.98 1.35 1-3

0.1 3.79 0.45 4 7.15 0.54 1,4 10.13 1.18 1-2,4 0.00 0.00 16.50 0.55 1-4
0.5 4.06 0.46 6.96 0.36 1 14.69 2.50 1-2 35.24 0.05 1-3,5 18.36 1.06 1-3

5

100
0.9 3.85 0.35 7.04 0.40 1 15.30 2.20 1-2 35.28 0.05 1-3,5 18.59 0.79 1-3

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 29.63 0.67 4-5 30.17 0.45 1,4-5 30.37 1.08 4-5 26.88 1.77 28.64 1.39 425
0.9 29.57 0.51 30.20 0.51 1 31.33 0.62 1-2 33.48 0.51 1-3 34.06 0.33 1-4

0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 30.24 0.27 4-5 30.53 0.35 1,4-5 31.00 0.54 1-2,4-5 17.55 1.79 28.13 1.58 4

u
sw

10

100
0.9 30.29 0.17 30.83 0.21 1 31.91 0.29 1-2 36.11 0.10 1-3,5 34.59 0.10 1-3

and results of significance tests following the style of Table 1. The

observation derived from the boxplots are confirmed. Figure 3 gives

a visual impression of actual runs of the (𝜇 + 1)-EA for different

representative setups. Here, we clearly see the advantage of biased

mutation after only 𝜇 iterations and the fast progress (note that the

𝑥-axis is on log-scale in order to make the first 𝜇 iterations more

visible).

5.3 Impact of crossover

The results for crossover are mixed. Table 3 shows a comparison

of the crossover version (CO) and mutation-only version (no-CO)

for the mutation operators BF, PBF and the biased EDO-BBF1. We

observe that crossover often supports the biased mutation in par-

ticular for increasing 𝜀, but often has the reverse effect for standard

mutation. These observations hold true for both the generous and

restricted budget scenarios. A reasonable explanation for this ef-

fect is that biased mutation likely is stuck in local optima close to

the optimum where the strong bias prevents the algorithm from

making further progress. Here, crossover might help to overcome

these plateaus.

6 CONCLUSION

We studied the zero-one knapsack problem in the context of evolu-

tionary diversity optimization. The goal is to evolve a set of packings

which all have a minimum profit, do not violate the capacity limit

of the knapsack and differ with respect to the packing structure.

We presented a simple (𝜇 + 1)-EA that is initialized with an ap-

proximate solution obtained by a classical FPTAS for the knapsack

problem and uses entropy as a diversity measure. The algorithm

is evaluated with different standard mutation operators for binary

representation and two (strongly) EDO-focused mutation operators.

In addition we studied the effect of an EDO-focused repair- and

crossover-operator. A comprehensive study on different instances

and setups showed that (a) heavy-tailed mutation is beneficial in
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Table 3: Mean (mean), standard deviation (std) and results of Wilcoxon-Mann-Whitney tests at a significance level of 𝛼 = 0.05

(stat) in terms ofmean entropy for threemutation operators with active crossover (CO) and inactive crossover (noCO). Highest

entropy values are highlighted in bold face .

BF PBF EDO-BBF1

no-CO (1) CO (2) no-CO (1) CO (2) no-CO (1) CO (2)

𝐷 𝜇 𝜀 mean std stat mean std stat mean std stat mean std stat mean std stat mean std stat

0.1 36.74 0.02 2+ 36.64 0.06 1− 36.77 0.00 2+ 36.74 0.01 1− 36.36 0.11 2− 36.75 0.01 1+

0.5 36.75 0.01 2+ 36.22 0.22 1− 36.77 0.00 2+ 36.69 0.03 1− 36.38 0.10 2− 36.76 0.01 1+25
0.9 36.74 0.02 2+ 35.38 0.45 1− 36.77 0.00 2+ 36.62 0.06 1− 36.42 0.13 2− 36.75 0.01 1+

0.1 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 36.58 0.02 2− 36.78 0.00 1+

0.5 36.79 0.00 2+ 36.78 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 36.61 0.02 2− 36.78 0.00 1+

2

100
0.9 36.79 0.00 2+ 36.73 0.03 1− 36.79 0.00 2+ 36.79 0.00 1− 36.60 0.02 2− 36.78 0.00 1+

0.1 36.06 0.02 2+ 36.00 0.01 1− 36.10 0.01 2+ 36.04 0.02 1− 35.85 0.03 2− 35.84 0.05 1−

0.5 36.75 0.01 2− 36.77 0.00 1+ 36.77 0.00 2− 36.77 0.00 1− 36.11 0.08 2− 36.76 0.01 1+25
0.9 36.75 0.01 2+ 36.51 0.09 1− 36.77 0.00 2+ 36.74 0.02 1− 36.08 0.08 2− 36.76 0.01 1+

0.1 36.17 0.00 2+ 36.12 0.01 1− 36.17 0.00 2+ 36.14 0.01 1− 35.80 0.02 2− 35.83 0.02 1+

0.5 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 35.87 0.02 2− 36.77 0.00 1+

5

100
0.9 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 35.86 0.04 2− 36.78 0.00 1+

0.1 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1−

0.5 35.85 0.02 2+ 35.80 0.02 1− 35.88 0.01 2+ 35.80 0.02 1− 35.68 0.05 2+ 35.62 0.03 1−25
0.9 36.77 0.01 2− 36.77 0.00 1+ 36.77 0.00 2− 36.77 0.00 1− 36.17 0.10 2− 36.76 0.01 1+

0.1 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1−

0.5 35.95 0.00 2+ 35.91 0.01 1− 35.95 0.00 2+ 35.92 0.00 1− 35.58 0.02 2− 35.66 0.01 1+

sc
o
rr

10

100
0.9 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 36.63 0.06 2− 36.78 0.00 1+

0.1 36.26 0.01 2+ 36.23 0.01 1− 36.29 0.01 2+ 36.25 0.01 1− 36.08 0.07 2− 36.15 0.04 1+

0.5 36.75 0.01 2− 36.75 0.01 1− 36.77 0.00 2+ 36.76 0.01 1− 36.40 0.11 2− 36.74 0.01 1+25
0.9 36.74 0.01 2+ 35.67 0.32 1− 36.77 0.00 2+ 36.65 0.03 1− 36.39 0.04 2− 36.75 0.01 1+

0.1 36.34 0.00 2+ 36.33 0.01 1− 36.34 0.00 2+ 36.33 0.00 1− 36.00 0.04 2− 36.00 0.03 1−

0.5 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 36.61 0.02 2− 36.75 0.01 1+

2

100
0.9 36.79 0.00 2+ 36.76 0.01 1− 36.79 0.00 2+ 36.79 0.00 1− 36.63 0.02 2− 36.78 0.00 1+

0.1 25.42 0.16 2+ 24.34 0.22 1− 25.65 0.13 2+ 24.63 0.32 1− 24.23 0.20 2+ 22.77 0.39 1−

0.5 36.68 0.01 2− 36.70 0.00 1+ 36.70 0.00 2+ 36.70 0.00 1− 36.02 0.09 2− 36.56 0.03 1+25
0.9 36.75 0.01 2+ 36.67 0.06 1− 36.77 0.00 2+ 36.76 0.01 1− 36.15 0.03 2− 36.76 0.01 1+

0.1 26.03 0.06 2+ 25.28 0.13 1− 26.14 0.03 2+ 25.47 0.14 1− 0.00 0.00 2− 0.00 0.00 1−

0.5 36.75 0.00 2+ 36.74 0.00 1− 36.75 0.00 2+ 36.74 0.00 1− 35.56 0.03 2− 36.10 0.03 1+

5

100
0.9 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 35.60 0.05 2− 36.78 0.00 1+

0.1 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1−

0.5 35.15 0.01 2+ 35.06 0.03 1− 35.17 0.01 2+ 35.08 0.03 1− 35.07 0.01 2+ 35.01 0.02 1−25
0.9 36.76 0.01 2− 36.78 0.00 1+ 36.77 0.00 2− 36.77 0.00 1− 36.15 0.14 2− 36.76 0.01 1+

0.1 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1−

0.5 35.22 0.00 2+ 35.19 0.01 1− 35.23 0.00 2+ 35.19 0.01 1− 35.00 0.02 2+ 34.88 0.03 1−

u
n
co
rr

10

100
0.9 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 36.60 0.04 2− 36.78 0.00 1+

0.1 36.76 0.01 2+ 36.74 0.01 1− 36.77 0.01 2+ 36.76 0.01 1− 36.57 0.07 2− 36.74 0.01 1+

0.5 36.75 0.01 2+ 36.36 0.17 1− 36.77 0.00 2+ 36.72 0.02 1− 36.50 0.07 2− 36.75 0.01 1+25
0.9 36.75 0.02 2+ 34.39 0.50 1− 36.77 0.00 2+ 36.47 0.15 1− 36.50 0.08 2− 36.74 0.00 1+

0.1 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 36.68 0.01 2− 36.75 0.01 1+

0.5 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 36.68 0.01 2− 36.78 0.00 1+

2

100
0.9 36.79 0.00 2+ 36.69 0.04 1− 36.79 0.00 2+ 36.79 0.00 1− 36.69 0.01 2− 36.78 0.00 1+

0.1 29.60 0.06 2+ 28.80 0.17 1− 29.68 0.07 2+ 29.16 0.13 1− 29.08 0.14 2+ 28.51 0.22 1−

0.5 36.73 0.01 2− 36.75 0.02 1+ 36.76 0.01 2+ 36.75 0.01 1− 35.97 0.10 2− 36.71 0.00 1+25
0.9 36.74 0.01 2+ 36.47 0.09 1− 36.77 0.00 2+ 36.71 0.03 1− 36.06 0.13 2− 36.75 0.01 1+

0.1 29.93 0.02 2+ 29.55 0.14 1− 29.96 0.01 2+ 29.66 0.09 1− 0.00 0.00 2− 0.00 0.00 1−

0.5 36.79 0.00 2− 36.79 0.00 1− 36.79 0.00 2− 36.79 0.00 1− 35.39 0.08 2− 36.31 0.03 1+

5

100
0.9 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 35.41 0.04 2− 36.78 0.00 1+

0.1 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1−

0.5 35.20 0.02 2+ 35.13 0.04 1− 35.23 0.01 2+ 35.13 0.03 1− 35.10 0.03 2− 35.08 0.04 1−25
0.9 36.76 0.01 2− 36.77 0.00 1+ 36.77 0.00 2+ 36.77 0.00 1− 36.06 0.08 2− 36.75 0.01 1+

0.1 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1− 0.00 0.00 2− 0.00 0.00 1−

0.5 35.30 0.01 2+ 35.26 0.02 1− 35.30 0.00 2+ 35.27 0.01 1− 34.93 0.01 2+ 34.89 0.02 1−

u
sw

10

100
0.9 36.79 0.00 2+ 36.79 0.00 1− 36.79 0.00 2+ 36.79 0.00 1− 36.53 0.08 2− 36.78 0.00 1+

the long-term, (b) EDO-focused operators clearly dominate stan-

dard mutation in a scenario with vigorously limited computational

budget, (c) the repair operators is slightly beneficial and (d), as a

negative result, the proposed crossover operator for most setups

has a negative effect on the EAs’ progress.

The research field of EDO is still in its infancy paving the way

for future work. Certainly, studying the effects of biased mutation

and crossover for other combinatorial optimization problem, e.g.,

vertex-cover or variants of scheduling problems, seems natural. In

addition, supported by the efficient short-term progress of biased-

mutation in this paper, studying EDO in the course of dynamic

optimization seems promising where the instance at hand is subject

to dynamic changes every 𝜏 iterations and re-optimization and

-diversifying is necessary.
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