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Abstract. We tackle a bi-objective dynamic orienteering problem where
customer requests arise as time passes by. The goal is to minimize the
tour length traveled by a single delivery vehicle while simultaneously
keeping the number of dismissed dynamic customers to a minimum.
We propose a dynamic Evolutionary Multi-Objective Algorithm which
is grounded on insights gained from a previous series of work on an
a-posteriori version of the problem, where all request times are known
in advance. In our experiments, we simulate different decision maker
strategies and evaluate the development of the Pareto-front approxima-
tions on exemplary problem instances. It turns out, that despite severely
reduced computational budget and no oracle-knowledge of request times
the dynamic EMOA is capable of producing approximations which par-
tially dominate the results of the a-posteriori EMOA and dynamic integer
linear programming strategies.

Keywords: Multi-objective optimization · Metaheuristics ·
Vehicle routing · Combinatorial optimization · Dynamic optimization

1 Introduction

Bi-objective orienteering belongs to the class of vehicle routing problems. It dif-
fers from classical Traveling Salesperson Problems (TSP) in that the number
of cities resp. customers is not fixed but rather a certain number of dynamic
customer requests have to be handled on the way from the start to the end
depot. Naturally, both the overall tour length as well as the number of unvisited
customers are desired to be minimized and we would like to dynamically react
to new customer requests so that previously optimized tours can be adjusted in
an efficient and optimal way. The design of an appropriate optimization algo-
rithm given this scenario is not trivial, especially as, additionally, decision mak-
ers’ preferences regarding the importance of both objectives have to be taken
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into account which might vary in the course of the operation time of the whole
tour. This paper introduces such a real-time expert system in terms of a spe-
cific dynamic evolutionary multi-objective algorithm (EMOA) integrating local
search strategies via inexact TSP solvers. The algorithm was designed by relating
to the detailed problem insights gained by previous studies which approached the
problem in a retrospective, offline way leading to a Pareto-front approximation
exploiting the full information about the dynamic problem characteristics.

Experimental studies provide a proof-of-concept analysis of the proposed app-
roach. It will be shown that it has the potential of outperforming competitive
integer linear programming (ILP) strategies in terms of solution quality. More-
over, the algorithm is capable of generating Pareto-front approximations which
come very close to and even partially dominate the solutions which resulted from
the offline approach. First results show that clustered instances are more chal-
lenging compared to random ones. As purely numerical performance assessment
is not trivial due to a lack of an appropriate performance indicator capturing
all requirements stated above, sophisticated visualizations illustrate algorithm
characteristics.

The paper is organized as follows: Sect. 2 gives an overview on related work,
followed by a detailed description of our proposed dynamic multi-objective evo-
lutionary algorithm in Sect. 3. Experimental results are provided in Sect. 4 and
summarized in Sect. 5, supplemented by an outlook on promising further research
building on the consolidated findings.

2 Background and Related Work

2.1 Static Multi-objective Optimization Problems

Let X and Θ be nonempty sets and f(x; θ) = (f1(x; θ), . . . , fd(x; θ))T a vector-
valued mapping with d ≥ 2 functions fi : X × Θ → R for i = 1, . . . , d, where
x is variable and θ ∈ Θ a tuple of fixed parameters. If these functions are to
be minimized simultaneously, they are called objective functions of the multi-
objective optimization problem min{f(x; θ) : x ∈ X} with decision set X ⊆ X.
The optimality of a multi-objective optimization problem (MOP) is defined by
the concept of dominance.

Let u, v ∈ F ⊆ R
d where F is equipped with the partial order � defined by

u � v ⇔ ∀i = 1, . . . d : ui ≤ vi. If u ≺ v ⇔ u � v ∧ u �= v then v is said to be
dominated by u. An element u is termed non-dominated relative to V ⊆ F if there
is no v ∈ V that dominates u. The set ND(V,�) = {u ∈ V | � v ∈ V : v ≺ u} is
called the non-dominated set relative to V .

If F = f(X; θ) is the objective set of some MOP with decision set X ⊆ R
n and

objective function f(·) then the set F ∗ = ND(f(X; θ),�) is called the Pareto-
front (PF). Elements x ∈ X with f(x) ∈ F ∗ are termed Pareto-optimal and the
set X∗ of all Pareto-optimal points is called the Pareto set (PS).
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2.2 The Dynamic Multi-objective Vehicle Routing Problem

The dynamic vehicle routing problem we consider in this work consists of one
vehicle that visits customer locations over time. The set of customers C\{1, N} =
Cm ∪ Co resolves into Cm, the subset of initially known customers and the set
Co of additional locations, which become known randomly while the vehicle is
en route. The vehicle starts its tour at a given location 1 (start depot) and ends
at a different location N (end depot). Locations that are known initially must be
visited by the vehicle (including depots), whereas locations that become known
in the course of time are optional. We refer to the set of optional customers that
have arrived until time t as Co

≤t.
Clearly, a static MOP (as defined above) has to be adapted as the Pareto-

front and Pareto-set now depend on dynamic parameters θ, i.e., in general we
have F ∗

θ and X∗
θ . In a dynamic MOP the parameters are no longer constant but

variable over time. As a consequence, a dynamic MOP (DMOP) at time step
t ≥ 0 is given by min{f(x; θt) : x ∈ X} where (θt)t≥0 is a sequence of parameter
tuples with time index t ≥ 0. For each point in time t ≥ 0 we could solve a static
MOP with solution F ∗

θt
and X∗

θt
and might regard the sequences of both sets as

the final solution. For a general survey on dynamic MOO, see [1].
However, this solution concept has little practical relevance. Instead, we spec-

ify a closed time interval Δt and monitor (the quality of) the best solutions that
can be achieved within the time interval. A similar solution concept can be found
in [15]. This is repeated multiple times, where at the end of each so-called era, a
decision maker (DM) is provided with the best solutions of that era. The quanti-
tative assessment of the sequence of best solutions found within the time interval
heavily depends on the application scenario.

Specifically, our VRP is dynamic in the sense that decisions about the vehi-
cle’s route (which of the customer locations known so far to visit, and how to
sequence these locations) are made repeatedly over time by a decision maker.
Although dynamic decision making has been an important research topic in
the field of vehicle routing (see, e.g., [9,14]), and although static variants of bi-
objective orienteering problems have been considered by a number of authors
(e.g., [2,5,8,10]), the research on dynamic bi-objective orienteering problems
still is in a very early stage. So far, only few authors work on dynamic multi-
objective vehicle routing problems, most of them proposing solution approaches
in terms of methodological frameworks that rely on evolutionary computation
(e.g., [6,13]).

Over the past decade a number of authors have solved (single-objective)
dynamic orienteering problems by combining integer linear programming with
waiting strategies (see [11] for an overview). The idea is to maximize the number
of visited customers over a given fixed time horizon by using linear programming
for calculation of a routing plan at each decision time. Therefore, simple waiting
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strategies1 are used, i.e., the vehicle remains idle at locations in these plans,
hoping for a close-by customer request to occur in the near future.

This approach can be transformed into an a-posteriori benchmark solution
for dynamic bi-objective optimization algorithms by selecting the best waiting
strategy and by then solving the problem several times, each time with a different
bound of the maximum tour length in the linear program. In Sect. 4 we use the
waiting strategies and the linear program described in [11] as benchmark for
the dynamic multi-objective evolutionary algorithm introduced in the following
Sect. 3.

3 The Dynamic Multi-objective Evolutionary Algorithm

Our dynamic EMOA for the considered orienteering problem is based on the
a-posteriori EMOA introduced in [10] with refined adjustments—in particular
in initialization and mutation—to meet the requirements of the dynamic setting.

Algorithm 1. Dynamic EMOA
Require: Instance I = (Cm, Co),

time resolution Δt, nr. of time slots nt

1: t := 0
2: tour := localSearch(Cm) � No dynamic

customers, i.e., solve single-obj. problem
3: t := t + Δt

4: P = NIL
5: driven.tour := findDrivenTour(tour, t)
6: for i in 1 to nt do
7: (P, F (P )) := EMOA(I, driven.tour, t, P )
8: tour := decide(P, F (P ))
9: t := t + Δt

10: driven.tour := findDrivenTour(tour, t)

Algorithm 2. EMOA
Require: Instance I = (Cm, Co), driven.tour,

time t, population of previous era Q, popu-
lation size μ

1: for i in 1 to μ do
2: Pi := initIndividual(I, driven.tour, t,

Qi) � Qi is NIL on start

3: F (P ) := evaluateFitness(P )
4: while stopping condition not met do
5: O := mutate(P )
6: O := localSearch(O)
7: (P, F (P )) := Select(P ∪ O)

8: return (P, F (P ))

Algorithm 3. initIndividual
Require: instance I = (Cm, Co), driven.tour,

current time t, template individual y
1: if not y is NIL ∧ y is feasible then
2: return y

3: Co
≤t := Dyn. customers arrived so far

4: D := Co
≤t \ driven.tour

5: x.b, x.p, x.t are vectors of length N − 2
6: x.bi := 1, x.pi := 0 ∀ i ∈ Cm ∨

i ∈ driven.tour
7: x.t := concat(driven.tour,

randPerm(C \ driven.tour))
8: x.pi := 1/|D| ∀i ∈ D
9: u := R(1, . . . , |D|) � Rnd. number
10: Set x.bi := 1 for u rnd. customers from D
11: if not y is NIL then
12: x := transfer(x, y)

13: return x

Algorithm 4. mutate
Require: Population P , swap prob. pswap,

nr. of swaps σswap
1: for x ∈ P do
2: flip x.bi with probability x.pi

3: tactive := seq. of active customers in x.t
4: if r ∼ R(0, 1) ≤ pswap then
5: for 1 to σswap do
6: swap two random pos. in tactive
7: return P

1 Two prominent strategies used also in this work for comparison reasons are Drive
First (DF) and Distributed Waiting (DW). While in DF the vehicle only waits at
its current customer location if both waiting time is available and the planned route
only contains the end depot, the latter strategy distributes the amount of available
waiting time equally among all customer locations of the current planned route.
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We start with a high-level description of the dynamic EMOA framework
accompanied by a example first and discuss the more complex solution encoding
scheme and mutation later on. The dynamic EMOA (see Algorithm 1) is basically
a wrapper around the static version introduced in [7] which uses NSGA-II [4] as
the encapsulating meta-heuristic (see Algorithm 2). It is started at time t = 0.
Note, that at this point in time only mandatory customers Cm are available.
Since no subset selection is necessary in this special case the problem is of single-
objective nature and we simply apply local search2 to approximate the optimal
tour serving all mandatory customers (see Fig. 1 left) and the first era ends. Here,
the DM is given only a single choice and there is nothing left to do. In subsequent
eras j = 1, . . . , nt however, already time j · Δt, Δt being the adjustable time
resolution, has passed and hence more and more dynamic customers request
for service. To be precise, in era j dynamic customers with request times ri ∈
((j − 1) · Δt, j · Δt] arrive. In each such era the static EMOA is started feeding
in the partial tour already driven by the vehicle (as time goes by, the vehicle
already may have served some of the mandatory and/or dynamic customers).
After termination, the resulting approximations are handed over to the DM who
needs to choose exactly one solution (see line 8 in Algorithm 1 and Fig. 1 middle
and right for example).

Time tt0 t1 = t0 + Δt t2 = t1 + Δt
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Fig. 1. Exemplary progress of the dynamic EMOA. The scatter plots show the Pareto-
front approximations with selected solutions highlighted ( ). Below the decision maker
choices are depicted (depots , mandatory customers and dynamic customers ).
A dashed path indicates the tour chosen by the decision maker while the thick solid
prefix path highlights the partial tour already driven.

2 We adopt EAX [12] as the local search procedure with focus on tour length min-
imization. Note, that we need to solve a shortest Hamiltonian path problem, but
EAX is a TSP solver. Thus, before application of the local search procedure, the
problem is transformed into a TSP by a sequence of modifications to the distance
matrix (see [10] for details).
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The encoding of candidate solutions needs to account for both the subset
selection of customers and the minimization of the Hamiltonian path serving all
selected customers. Thus, three essential vectors of length N −2 are maintained:
(1) a permutation vector holds the sequence of customers, i.e., the actual tour,
(2) vector b = (b2, . . . , bN−1) ∈ {0, 1}N−2 indicates whether a customer i ∈
{2, . . . , N − 1} is active (bi = 1) or inactive (bi = 0) and (3) vector p ∈ [0, 1]N−2

holds the flip probabilities for the mutation operator (see below). Building the
initial population (see Algorithm3) is a complex process since several dynamic
aspects need to be considered: (1) we need to ensure, that both mandatory
and already visited (potentially dynamic) customers are active and cannot be
removed by mutation (line 6). Hence, bi = 1 and pi = 0 for those customers. (2)
the partial tour already driven must not be changed and hence the first positions
of the permutation vector correspond to this sequence (line 7). (3) We transfer
knowledge from the final population of the previous era in order to not start from
scratch. This is achieved by simply copying the individual if it is still feasible
(line 2). Otherwise, we transfer as much information by keeping active customers
active and maintaining the tour as far as possible (line 12). The initialization
procedure guarantees feasibility of initial solutions.

Mutation is twofold to account for both objectives (see Algorithm 4). First,
available customers are added or removed by flipping each bit bi independently
with probability pi. Next, with probability pswap ∈ (0, 1] some random posi-
tion exchanges in the permutation vector are performed limited to active cus-
tomers not yet visited, i.e., which are not part of the already driven part of the
tour. Note, that mutation is non-destructive and hence feasibility is maintained.
Finally, mutated solutions are subject to local search at certain generations.
Here, we apply EAX [12] with the last customer of the already driven tour as
the start node and the end depot as the destination node omitting already vis-
ited customers. It is important to stress, that the local search operator is focused
on tour length minimization only, since we consider this objective to be more
difficult. Furthermore, take notice that EAX does not take request times into
consideration. Hence, the length of the resulting tour is a lower bound on the
true tour length. We take the solid foundations and results laid down in [3,10]
as a justification for this approach.

4 Computational Experiments

Experimental Setup: In order to evaluate the dynamic EMOA introduced in
Sect. 3, we perform proof-of-concept experiments. We select 5 instances with N =
100 customers (including depots) each: one instance with locations distributed
uniformly at random in the Euclidean plane and 4 instances with 2, 3, 5 and 10
clusters respectively form the instances introduced in [10]. The proportion of
dynamic customers is chosen to be 75% for all instances, in order to specifically
analyze the working principles of our approach.

We fix the time resolution Δt = 100 and determine the number of eras as
�maxi∈C(ri)/Δt� + 1, where ri ≥ 0 is the request time of customer i ∈ C. The



522 J. Bossek et al.

final parametrization of the dynamic EMOA is gathered in Table 1. These set-
tings deserve further explanation: Preliminary experiments were performed test-
ing different parameter settings. More precisely, we varied local search (on/off),
transfer of knowledge of previous eras (on/off), the swap-mutation probability
pswap ∈ {0.2, 0.4, . . . , 1} and the way available dynamic customers are being dis-
tributed in the initial solutions of each era (uniform/binomial). Unsurprisingly,
local search (see our a-posteriori study in [3]) and knowledge transfer are bene-
ficial settings to not discard progress already being made. The latter two varied
parameters, pswap and the distribution of dynamic customers in initial solutions,
however, show strong interaction with local search. It turns out, that a high swap
probability with binomial distribution leads to poor front coverage in areas with
a high number of unvisited customers. This can be explained as follows: Local
search pushes solutions to the left (focus on tour length minimization). Now
assume, we are given a very good solution with respect to tour length and apply
mutation with high swap probability. Assume further, that mutation deactivates
some customers. Clearly, since the tour can only become even shorter, this step
pushes the solution to the top left area of the Pareto-front approximation. Since
the tour is already close to optimal, the subsequent swaps introduce edge cross-
ings and have a destructive effect with overwhelming probability. Consequently,
the mutated individual shifts to the right (larger tour length) and is likely to
be dismissed by the following survival selection. In case of binomial distribution
each available dynamic customer is activated with probability 1/2. Hence, the
number of activated dynamic customers is binomially distributed with expected
value Nd

t/2 where Nd
t is the number of dynamic available customers at time t > 0.

The probability that the actual number deviates from the expectation is rather
low and hence is concentrated heavily around it. Thus, this type of initialization
in combination with activated local search and high swap probability tends to
produce the above mentioned poor coverage. We bypass this problem by adopt-
ing a uniform distribution of dynamic customers, i.e., each number of active
available customers is active with equal probability.

Table 1. Dynamic EMOA parameterization.

Parameter Setting

Generations per era 65.000

μ, λ 100

pswap 0.6

σswap
N/10 = 10

LS application in generations initial, half-time, last

Cutoff time for LS 1s

Transfer knowledge from last era on

Distribution of dynamic customers Uniform
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In this study, we simulate different decision maker strategies which are based
on order ranking of the first objective (tour length). In a nutshell, the n solutions
of the EMOA are ordered in ascending order of tour length3 and the DM decides
for the �rank·n�-ranked solution with rank ∈ {0.25, 0.5, 0.75} in each era. Clearly,
in real world scenarios, the DM can make different decisions in each era to adapt
to different situations and we are aware of the limitations of our DM policies.
However, for a first study and for an automated evaluation of the approach, we
consider these fixed three strategies a good starting point.

We performed 10 independent runs on each instance. The implementation of
our dynamic EMOA is available at a public repository4.

Results: On the one hand, the following results contribute to the understanding
of the working principle of the dynamic evolutionary approach. On the other
hand, they show the applicability and provide a feeling for the potential of such
an approach.

Figure 2 comprises two representative series of depictions of the intermedi-
ate Pareto-front approximations generated in each era of the algorithm run, for
uniform (top) and clustered (bottom) topologies of customers. Each era bases
on decisions made during previous process. For the decision making process
three ranks were fixed. In each plot, the Pareto-fronts of the dynamic app-
roach are colored per era from dark blue (first era) to light green (last era).
For visual comparison, Pareto-front approximations of the a-posteriori EMOA
recently proposed in [3] and of an ε-constrained-based ILP approach using the
dynamic single-objective strategies [10] described in Sect. 2 are shown. Note, that
– for comparison reasons – the results of all eras have been transformed to the
a-posteriori solution space. Additionally, the sub-figures contain horizontal lines
colored according to the eras. Those lines define a true upper bound of available
unvisited customers for that era. It is clear that depending on the current era
and previous actions of the DM, the upper bound decreases.

The first interesting finding is, that our approach is capable of outperforming
the ILP-based a-posteriori strategy directly and the MOEA-based a-posteriori
approach on the long run. Although the a-posteriori approaches possess com-
plete information on the (virtually) dynamic service requests, the dynamic app-
roach is able to generate comparable or even better solutions without foresight
- especially for uniform topologies. For clustered topologies, the approach often
outperforms the ILP-based strategy in its final era and sometimes even becomes
comparable to the a-posteriori EMOA solutions. This is especially true, when the
(higher) decision maker rank favors the second objective (number of unvisited
customers).

The at a first glance surprising superiority over the a-posteriori approach is
rooted in the fact, that the search space for the a-posteriori problem is much
larger than the restricted dynamic scenario, in which previous decisions and a

3 Note that in the bi-objective case this leads to a sorting in descendant order of the
number of unvisited customers.

4 Repository: https://github.com/jakobbossek/dynvrp/.

https://github.com/jakobbossek/dynvrp/
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Fig. 2. Scatter plots of representative Pareto-front approximations for three different
decision maker strategies on uniform (top) and clustered (bottom) topologies. Points
are colored by era. Colored horizontal lines indicate a true upper bound for the number
of unvisited available dynamic customers w.r.t. the era. For comparison front approxi-
mations based on complete a-posteriori knowledge obtained in [3] and [10] are shown.
(Color figure online)

fixed partial tour reduce the search space dramatically. While in the a-posteriori
case for selecting an optimal subset of visited customers, all customers are eli-
gible, the dynamic approach can narrow the subset selection to still available
customers w.r.t. the already fixed partial tour.

The analysis of the representative results in Fig. 2 for uniform and clustered
topologies5 shows that era results for uniform topologies are closer to the a-
posteriori results than era results for clustered topologies. To provide a more
detailed insight into this aspect, we show respective embeddings of found (inter-
mediate) solution tours for both topologies in Fig. 3. For both settings, the DM
selected solutions of era 1, era 4 and era 9 are plotted including the path to
already visited customers (bold) and the plan for the remaining tour considering
currently available customers. In the top row of Fig. 3, the tour starts with the
mandatory customers and successively integrates new appearing customers into
the tour. As customers are uniformly distributed in search space, later appearing
customers can easily be integrated in the not yet fixed part of the tour.

In contrast to this, for clustered instances like in Fig. 3 (bottom), new cus-
tomers appear over time in different clusters. Here, the mutation operator

5 We find similar behavior for all investigated (but not shown) topologies for multiple
repetitions.
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Fig. 3. Embedding of the actual tours the decision maker (rank 0.75) decides for at the
end of eras 1, 4 and 9 respectively. The bold part of the tour is already fixed/visited
and is hence not subject to change in subsequent eras.

(i.e. random activation of customers) and preferences of the DM potentially
have major impact on the quality of the solution. On the one hand, mutation
may include customers from a distant cluster. On the other hand, strong DM
preference on maximizing the number of visited customers (set to 0.75 for exam-
ple shown in Fig. 3) may force the algorithm to select newly available customers
from a distant cluster. Both will lead to long traveled distances in the result-
ing tour and as such deteriorate the overall trade-off solution compared to the
a-posteriori results. This suggests, that future work should deal with elaborated
mutation mechanisms that try to avoid (or alternatively repair) multiple long
distance travels between clusters.

In order to evaluate the process of decision making and to test our approach
for stability w.r.t. multiple runs, we plot the intermediate decision results lead-
ing to the final realized tour in Fig. 4. According to our standard color scheme,
we show picked solutions of the parametrized DM for all eras and over all runs.
Additionally, the centroid of the final realizations is shown as black-framed dot.
The solid black line connects the centroids of the intermediate decisions and
shows the decision path. For the representative results in Fig. 4 we can conclude
two aspects: (1) The dynamic approach is stable over multiple runs, i.e. the
variance in produced solutions is low. (2) Compared to the a-posteriori approx-
imated Pareto-front, the final decisions made under the dynamic evolutionary
scheme quite perfectly reflect the parametrized ranking set up for the DM.

Note, that all qualitative results presented here also hold for the investigated
topologies (different number of clusters) in the same way.
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Fig. 4. Paths of decisions taken by different decision maker policies. Colored points
represent the decisions made in the corresponding eras for all 5 independent runs.
Paths run through the centroids of per era decisions. The centroid of final decisions is
highlighted as black-framed dot at the end of the decision path. (Color figure online)

5 Conclusions and Outlook

Our previous studies on bi-objective orienteering from an offline perspective
resulted in detailed insights into problem characteristics and challenges for
respective multi-objective (evolutionary) algorithm design. This paper proposes
an online-approach for multi-objective dynamic optimization, which is required
in practice for adjusting a currently active vehicle tour to new customer requests.
A crucial feature of the new real-time optimization system is the possibility of
incorporating user preferences regarding both objectives, which can either be
given as a fixed a-priori rule or interactively adjusted along the algorithm run
whenever an adjustment decision of the current tour has to be made.

Initial proof-of-concept experiments indicate that ILP strategies are outper-
formed by our approach in terms of solution quality and efficiency. The latter
point is especially important regarding scalability w.r.t. the instance size. With
increasing instance size ILP strategies will become infeasible in terms of the
real-time system requirement. Moreover, ILP methods are based on a-priori fixed
waiting strategies in contrast to flexible preference incorporation. Additionally, in
our settings, the dynamic approach comes close or even dominates certain parts
of the Pareto-front approximation gained by the retrospective offline EMOA. We
find, however, that dynamic optimization becomes more challenging on clustered
instances due to higher probability of long distances travels between customers.
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Next steps will include a comprehensive benchmark study on a large set of
representative instances in terms of proportion of dynamic customers (differ-
ent from here considered 75% optional customers), degree of clustering as well
as instance sizes. Realistically, the current instance size is already quite large
in terms of one vehicle serving 100 customers a day. From the hybridization
point of view, the influence of local search has to be investigated for the online
case. A straightforward extension will be allowing for more than one vehicle,
which increases practical relevance but poses additional challenges onto dynamic
EMOA design. For a systematic validation, a suitable performance indicator
simultaneously incorporating the quality of the final Pareto-front approxima-
tion, the any-time performance along the EMOA run, robustness across multiple
runs, and the degree of user preference fulfillment, has to be derived.

Acknowledgments. J. Bossek, C. Grimme, S. Meisel and H. Trautmann acknowledge
support by the European Research Center for Information Systems (ERCIS).
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