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ABSTRACT

Research has shown that for many single-objective graph problems
where optimum solutions are composed of low weight sub-graphs,
such as the minimum spanning tree problem (MST), mutation op-
erators favoring low weight edges show superior performance.
Intuitively, similar observations should hold for multi-criteria vari-
ants of such problems. In this work, we focus on the multi-criteria
MST problem. A thorough experimental study is conducted where
we estimate the probability of edges being part of non-dominated
spanning trees as a function of the edges’ non-domination level
or domination count, respectively. Building on gained insights, we
propose several biased one-edge-exchange mutation operators that
differ in the used edge-selection probability distribution (biased to-
wards edges of low rank). Our empirical analysis shows that among
different graph types (dense and sparse) and edge weight types
(both uniformly random and combinations of Euclidean and uni-
formly random) biased edge-selection strategies perform superior
in contrast to the baseline uniform edge-selection. Our findings are
in particular strong for dense graphs.
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1 INTRODUCTION

Evolutionary algorithms (EAs) have been shown to be successful
problem solvers in a wide range of application areas such as engi-
neering, design, and manufacturing [8, 9]. They are often applied
to problems where there is not enough knowledge on the problem
at hand or where the problems are too complex to be solved by
traditional optimization methods such as dynamic programming or
mixed integer programming. Evolutionary algorithms have a huge
success story within the area of multi-objective optimization. As
EAs work with a set of solutions called a population, they are ex-
tremely well suited to compute trade-offs with respect to a given set
of objective functions. Various types of evolutionarymulti-objective
algorithms (EMOAs) have been developed and applied over the last
25 years (see e. g., [10]). When using an evolutionary algorithm for
a problem where there is some domain knowledge, such knowl-
edge should be incorporated to make the algorithm more efficient.
Different studies show that problem specific operators can lead
to a significant improvement in terms of the quality of solutions
obtained and the runtime required to do so (see, e. g., [13]).

In this paper, we design problem specific mutation operators for
the multi-objective minimum spanning problem. This NP-hard
multi-objective optimization problem has obtained significant atten-
tion in the traditional operations research [12, 17] and evolutionary
computation literature [6, 14, 19]. It generalizes the classical min-
imum spanning tree problem which can be solved in polynomial
time by well-known algorithms such as Kruskal and Prim to more
than one weight function. Spanning tree problems as abstractions
of various network design problems play a crucial role in the area
of optimization. The classical minimum spanning tree problem gets
NP-hard when imposing additional restrictions such as a diameter
or degree bound that a solution has to meet. For the unconstrained
and the degree-bounded minimum spanning problem, Raidl et al.
[16] have designed problem specific edge-exchange operators that
prefer edges of low weight to be included in a solution. Specifically,
they rank edges according to weight and assign probabilities for
including an edge as part of their mutation operator depending
on the rank. More recently, Bossek and Grimme [5] have intro-
duced a problem-tailored mutation operator for the multi-objective
minimum spanning tree problems. Their algorithm selects random
connected sub-graphs of a candidate solutions and replaces those
with an optimal sub-tree with respect to a random weighted sum
scalarization.

We present different approaches of generalizing the biased mu-
tation approach of Raidl et al. [16] for single-objective spanning
tree problems to the multi-objective case. The idea is to establish
a ranking on the edges of the given graph in order to design such
rank-based mutation operators. It should be noted that we expect
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our approach not only to be applicable to the multi-objective min-
imum spanning tree problem, but also to other problems where
the objective function values are given by the sum of the chosen
components of the problems. This includes for example the multi-
objective Traveling Salesperson Problem where each edge has more
than one weight and the trade-offs with respect to the different
weight functions have to be computed.

The remainder of this work is structured as follows: In Section 2
we formulate the combinatorial problem under consideration and
motivate our main research question. Section 3 introduces ranking
schemes for edges in the multi-criteria case and conducts a proba-
bility estimation study. On top of this, we introduce several biased
edge-selection strategies in Section 4 and perform a comparative
study in Section 5. Section 6 concludes the work and gives pointers
to promising future research directions.

2 RESEARCH QUESTION

Let G = (V ,E, c) be a connected graph with edge-weights c(e) =
(c1(e), . . . , co (e))∀e ∈ E where c : E → R

o is a vector-valued
function which assigns o weights to each edge of G. We abbrevi-
ate n = |V |,m = |E |, and write e ∈ G to indicate that an edge
is in the edge set of a graph. With slight abuse of notation we
overload the cost function and denote the costs c(G) of G as the
component-wise sum of its edge weights, i. e., ci (G) :=

∑
e ∈E ci (e)

for i ∈ {1, . . . ,o}. A connected, acyclic subgraph T = (V ,ET ) of G
with ET ⊆ E is termed a spanning tree of G. Let T denote the set
of all spanning trees of G. The multi-criteria minimum spanning

tree problem (mcMST) is to locate the set of optimal compromise
solutions minimizing all cost functions simultaneously:

min
T ∈T

c(T ) = (c1(T ), . . . , co (T )) .

The concept of Pareto-dominance is adopted throughout the pa-
per to define optimality: for T1,T2 ∈ T we say that T1 dominates

T2, T1 ⪯ T2 in formula, if ci (T1) ≤ ci (T2) for all i ∈ {1, . . . ,o}
and there is at least one objective j ∈ {1, . . . ,o} with c j (T1) <

c j (T2). If there is no spanning tree which dominates T1 it is termed
non-dominated or efficient. Hence, considering the mcMST, we
strive to identify the set of all non-dominated spanning trees PS =
{T ∈ T | ∄T ′ ∈ T with T ′ ⪯ T }, called Pareto-set, and its image in
the objective space c(PS) = {c(T ) |T ∈ PS}, called Pareto-front,
respectively.

Note that for o = 1 the problem is easy in terms of computational
complexity. Well-known algorithms, e. g., by Kruskal [15], find
single-objectiveMSTs in polynomial time.Whenmultiple objectives
are considered, the optimization problem turns NP-hard [17] and
suffers from intractability.1

When the mcMST is tackled by means of an evolutionary algo-
rithm a natural, plain and simple mutation operator is the one-edge-
exchange operator. Given a feasible candidate solution T ∈ T it
selects an edge e ∈ E at random for inclusion into T , which yields
T ′
= T ∪ {e}. If T ′

= T we are done. Otherwise, there is exactly
one cycle in T ′. Dropping an edge f of this cycle at random, we
end up with another feasible candidate solution T ′ \ { f }. Usually,

1Due to Cayley’s theorem [7] the set T has cardinality nn−2 . Ruzika and Hamacher
[17] provide an example where all |T | spanning trees are efficient.

the underlying probability distribution for edge-selection is uni-
form, i. e., each edge is selected with probability p(e) = 1/m. Our
main research question is: Is it possible to alter/bias the probability
distribution such that edges of łlow-weightž are favored and conver-

gence to the Pareto-front is accelerated? We approach this question
systematically in the following sections.

3 RANKING OF EDGES IN THE
MULTI-CRITERIA CASE

In their seminal paper, Raidl et al. [16] derived rank based edge-
selection probabilities for edges to be inserted into candidate solu-
tions during an EA optimization for single-objective MST problem
among others. In preliminary experiments they empirically ana-
lyzed the probability with which edges appear in optimum span-
ning trees as a function of the edges’ rank. The study reveals that
low-ranked (low-weight) edges are more likely to be members of
optimum solutions. It is a legitimate assumption, that in the multi-
criteria scenario with o ≥ 2 objectives, non-dominated spanning
trees are mainly composed of łlow-rankedž edges as well.2 This
assumption is theoretically founded, since each sub-tree of an effi-
cient spanning tree is efficient (see [17], i. e., non-dominated among
all such sub-trees.). However, since there is no total order in the
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Figure 1: Scatterplot of edge weights for an exemplary in-

stance of a complete graph with two random weights per

edge. The point size and color indicates the fraction of ef-

ficient spanning trees the corresponding edge is part of.

multi-criteria case, we need to come up with an appropriate defini-
tion of the rank in a first step. As a starting point consider Figure 1,
which shows a scatterplot of edge weights of a complete graph with
n = 10 nodes and two uniform random weights. The point size and

2Note that sometimes the inclusion of large-weight edges is unavoidable. Consider
the case of a bridge-edge, i. e., an edge whose deletion would cause the graph to be
not connected anymore. Regardless of its weight and the definition of rank, this edge
is part of any (non-dominated) spanning tree.
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Figure 2: Exemplary graphs of each instance group considered in our study. The plots show the graph topology (top row) and

a scatterplot of the corresponding edge weights (bottom row). The color and size of points in the latter plots indicates the

relative share of (supported) efficient trees it is part of (the bigger/brighter the more frequent).

color indicates the share

s(e) =
|{T = (V ,ET ) ∈ PS | e ∈ ET }|

|PS |
(1)

of non-dominated spanning trees the corresponding edge is incor-
porated in. Obviously, edges which are dominated by only few other
edges or are located on low non-domination levels are predominant
building blocks of efficient spanning trees. This observation moti-
vates the following two rank definitions for edges of a weighted
graph G = (V ,E, c) adopted in this paper:

Non-domination level based In this approach, edges are cat-
egorized into non-domination levels. The first level L1 con-
sists of all non-dominated edges of G. The second level is
build up of all non-dominated edges of E \ L1 and so on.
Given a sequence of levels L1, . . . ,Llmax

, with lmax being the
maximum level, we say that e ∈ E has rank r (e) = i if e ∈ Li .

Domination count based In this definition the rank of an
edge is defined as r (e) = |{e ′ ∈ E | c(e ′) ⪯ c(e) |, i. e., the
number of edges it is dominated by. In contrast to the non-
domination level based formulation this rank definition is
more fine-grained and exhibits a larger set of value on non-
degenerate graphs.

We use the notion łrankž synonym to non-domination level or
domination count based rank respectively in the remainder of this
paper.

3.1 Estimation of rank probabilities

It is reasonable to assume that rank probabilities depend on the
type of edge weights (purely random or a combination of geometric
and random), graph topology (random or clustered) and/or density
2m/(n(n − 1)) ∈ [0, 1]. To account for this we considered three
different graph topologies:

CEG Nodes are placed uniformly at random in the Euclidean
plane [0, 100]2 and all pairwise edges exist (Complete Edge

Generation).

DEG Again, nodes are placed at random in the Euclidean plane.
The interconnection of nodes is based on the Delauney tri-
angulation (Delauney Edge Generation) of the point coor-
dinates [11]. In contrast to the CEG-type these graphs are
rather sparse withm = Θ(n).

CL-DEG Here, the node placement is two-fold: 1) k = 5 cluster
centers are placed in [0, 100]2 bymeans of a Latin-Hypercube-
Sample [18]. Next, each n/k nodes are placed uniformly at
random around the cluster centers. Inner-cluster edges are
based on a Delauney triangulation (Clustered Delauney Edge
Generation). Edges between clusters are generated by con-
sidering the complete graph spanned by each l = 3 randomly
selected nodes from each cluster and sequential MST single-
objective MST computation to ensure the resulting graph to
be connected.

Edge weights c1(e) and c2(e) are either both real numbers chosen
independently at random from a uniform distribution U[5, 200]
(denoted as RNDRND in the following) or c1(e) is based on the
Euclidean distance of the point coordinates and c2(e) stems from a
U[5, 200]-distribution (EUCRND). The R software grapherator [3]
was used for instance generation.

Combining both aspects results in the six graph types CEG-
RNDRND, CEG-ECURND,DEG-RNDRND,DEG-EUCRND, CL-DEG-
RNDRND and CL-DEG-EUCRND. Embeddings in the Euclidean
plane are depicted alongside scatterplots of edge weights in Figure 2
for each one instance of each group. Glancing at the scatter-plots
in the bottom row, we observe a strong tendency towards low-rank
edges in particular for complete graphs again. For the more sparse
graphs it seems that even mid-rank edges are frequent members of
efficient spanning-trees.
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Figure 3: Empirical probability that an edge is part of at least one (supported) efficient spanning tree as a function of its non-

domination level or domination number respectively (zero probabilities were filtered to smooth the estimates). The plots show

probability estimations for different problem instance types and instance sizes n.

We estimated the probability of an edge to be part of an effi-
cient spanning tree as a function of its rank. More precisely, for
a single instance G and edge e ∈ G we first calculated the share
s(e) of non-dominated spanning trees it is part of (see Eq. (1)). The
probability of a rank-i edge is the average of shares of all edges of
the corresponding rank. We repeated the above estimation for each
1000 randomly generated graphs of each instance group and in-
stances size n ∈ {25, 50, 100, 250}. Hence, the probability of a rank-i
edge for a specific instance type and size is the mean probability
of the corresponding rank over all 1000 instances. A few words
on Pareto-set computation: For instances with up to 50 nodes we
calculated the Pareto-set with the exact multi-criteria Prim algo-
rithm (see [12, p. 238]). However, for larger instances this approach
became infeasible due to computational limitations. Hence, for
n > 50 we relied on approximations of the Pareto-set instead of the
true Pareto-set. Here, we adopted a weighted-sum approach with
equidistant weights λ1 =

k
1000 ,k = 0, 1, . . . 1000 and minimized

λ1c1(T ) + (1 − λ1)c2(T ) with a single-objective algorithm. In a pre-
processing step we filtered out duplicates within the approximation
sets of 1001 supported efficient trees, since different weights may
result in the same resulting non-dominated spanning tree.

Figure 3 depicts the empirical probabilities. For clarity only parts
with probability greater ε = 0.01 are depicted for smoothing the
curves. Otherwise, in case of the domination-count based ranking,
the curves show strong oscillation. This can be explained as follows:
non-domination levels are continuous in the sense that if rank
i exists, ranks 1 ≤ j < i necessarily exist. This property does

not hold for the domination-count based ranking. The empirical
probabilities present a clear picture.We observe that low-rank edges
(for both non-domination level and domination count based ranks)
have a much higher probability of occurrence in non-dominated
spanning trees. However, in contrast to the single-objective case
where a rank-1 edge is in a MST with probability 1 this is not
the case in the multi-objective case due to the nature of trade-off
solutions. Furthermore, Figure 3 reveals that for dense graphs (CEG)
ś regardless of the edge weight type (RNDRND or EUCRND) ś the
curve runs below the one for all remaining, less dense, graphs.
This can be explained by the larger number of non-dominated
spanning trees for CEG-graphs. This observation is supported by
the exemplary scatterplots of edge weights in Figure 2 (bottom
row) where for DEG-type graphs edges of higher rank are far more
frequent members of non-dominated solutions. A close-up look
at the curves reveals a subtle difference between RNDRND and
EUCRND edge weighted graphs. While the probabilities for low-
rank edges are higher for the former there is a position-swap for
higher ranks where probabilities for the latter are higher (again
this observation is independent of the adopted definition of rank).
This effect is slightly stronger for clustered instances (CL-*) and
can be explained as follows: There are only few edges interlinking
clusters and these edges have a large first weight in EUCRND-type
instances due to the distance of clusters. By chance the second
objective is large, too. Since a spanning tree is connected, a fraction
of those heavy edges is often a necessary part of non-dominated
spanning trees. In summary, our observations support our intuition
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and assumptions. This motivates the design of biased edge-selection
strategies and incorporation into the one-exchange operator in the
next section.

4 BIASED EDGE SELECTION STRATEGIES

In this section we propose four biased edge-selection strategies for
the one-edge-exchange mutation operator (see Section 2). Based
on the insights gained by observing the space of Pareto-optimal
spanning trees and the conducted rank probability estimations we
implement a bias towards edges of low rank.

Rank Estimate (RE) Here we incorporate the empirical rank
probabilities directly. Let pr be the probability that an edge
of non-domination level r is part of at least one efficient tree
and Er ⊂ E be the set of edges located on non-domination
level r . With this the probability of selection edge e ∈ E for
inclusion into the current candidate solution T is given by

p(e) =
pr + ε

∑
Rank r |E

r |(pr + ε)
.

Note that we add a small constant ε > 0 to account for
the possibility that certain ranks may not have occurred
during the rank probability estimation due to randomness
of instance generation.

Domination-Count Estimate (DE) This strategy is identical
to RE but pr is based on the domination-count based ranking.

Rank Simple (RS) The edge selection probability of edge e ∈

E is proportional to the non-domination level of e , i. e.,

p(e) =
lmax − r (e) + 1

∑
e ∈E (lmax − r (e) + 1)

, (2)

where lmax is the maximum non-domination level. Note that
the linear transformation is performed because we prefer
low-ranked edges. Note further, that the addition of 1 is
necessary to allow the selection of edges with highest non-
domination level.

Domination-Count Simple (DS) Identical to the RS-strategy
(see Eq. 2). However, instead of non-domination level based
ranking we use the domination-count based ranking.

5 EVALUATION

In order to evaluate the performance of all four proposed biased
edge-selection strategies (DE, DS, RE and RS) in comparison to
the uniform selection (UN) as baseline we performed a series of
experiments.

5.1 Experimental Setup

We generated 25 instances of each combination of instance type
and instance size considered in the rank estimation experiment
series conducted in Section 3 (6 × 25 = 150 instances in total).
The well-known NSGA-II [10] served as a wrapper for the one-
edge-exchange mutation operator3, which was run with each edge-
selection strategy 25 times on each problem instance. It should
be noted that the i-th run was started with the same initial popu-
lation for each mutation operator. The remainder of the setup is

3Recombination was omitted due to the potential bias of the results, since we focus on
mutation exclusively.
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Figure 4: Exemplary optimization traces for each one in-

stance of n = 250 nodes. We show the mean Hypervolume

indicator values and 95% confidence bounds.

µ = 100, λ = 50, mutation probability pm = 1 and 100 · n func-
tion evaluations served as the only stopping criterion. At discrete
steps in time, 10%, 50%, 70%, 80%, 90% and 100% of total generations,
we measured the progress of the EMOA by means of the Pareto-
compliant hypervolume indicator (HV) [20] and the ε-indicator [20].
Solutions of 1000 runs of a weighted-sum scalarization approach
with equidistantly chosen weights λ1 ∈ [0, 1] and λ2 = 1−λ1 served
as the reference set for the indicator computation.

The experiments were carried out with the software package
mcMST [2]. The software ecr [1, 4] served as a toolbox for perfor-
mance assessment of the experimental results.

5.2 Results

In the following we take several perspectives and report the results
here. In a first approach, we consider the development of solution
quality over time for all instances on all topologies. Figure 4 shows
exemplary traces for the hypervolume indicator (HV) [20] mea-
sured over the whole runtime budget for the encapsulating EMOA.
We show the mean traces over 25 runs for a representative instance
out of each instance group with n = 250 nodes. For this instance
size the traces show that all biased strategies outperform the base-
line approach. This holds especially true for the observed instances
that are strongly interconnected and dense (see CEG instances).
Here, the domination-count estimate strategy (DE) is superior. Es-
pecially for clustered and the less dense DEG instances, differences
in performance of the biased strategies are not always clearly iden-
tifiable in the comparison of averaged traces. Therefore, in a second
step, we approach the analysis from a different perspective. We
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Figure 5: Parallel coordinate plots of the average of median

Hypervolume ranks (lower is better) split up by instance

group (rows) and instance size (columns).

rank the edge-selection strategies regarding mean hypervolume
performance for each instance type and size and report the median
hypervolume ranks per group and point in time (aggregation over
all instances). The results shown in the parallel coordinate plots in
Figure 5 confirm the observations for strongly connected and dense
instances observed in Figure 4 for both large and small instances .
However, for CL and DEG instances we can observe a superiority
of the Rank Estimate (RE) on large instances. Interestingly, this
effect does not hold for smaller instances. Here, the biased selection
strategies often switch rank positions over time and specifically
the winner for large instances (RE) performs worst of the four
proposed approaches for small instances. The observation of the
performance compared to uniform selection (UN) becomes most
interesting for small instances (n = 25). While UN is outperformed
at the beginning, its application seems to become beneficial later
on. Figure 6 additionally validates the observation for the final re-
sults of EMOA runs. While in CEG instances all biased mutations
outperform the uniform selection for hypervolume as well as the
unary ϵ-indicator, UN is comparable to the biased operators for
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Figure 6: Distributions of hypervolume-indicator (top rows)

and unary ε-indicator (bottom rows) for representative in-

stances (the lower the better). Reference sets are based on

the union of all approximation sets over all runs and edge-

selections strategies.

small and less connected/dense instances. For larger instances, UN
is also outperformed on CL and DEG instances.

These findings are further detailed in Tables 2 and 3. In the first
case, we again investigate the performance development over time
and focus in Table 2 on three points in time during EMOA runs. At
these points in time, we register the best performing edge-selection
strategywith respect to hypervolume for the same initial population
in each replication. This has been performed for all instance sizes
n ∈ {25, 50, 100, 250} and all instance groups. In Table 2, we show
the percentage of best performance per condition. We find that in
most cases, DE wins the competition against all other selection
operators for connected/dense instances during the evolutionary
process. But also for other instances and all instance sizes, the
application of biased selection is overall helpful. Only in a minority
of cases (and inversely related to instance size) UN is the overall
superior selection operator.

Table 3 details the pairwise comparison of performance of the
selection operators regarding the HV indicator. For testing, we use
the non-parametric Wilcoxon rank sum test testing the hypothesis
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Table 1: Median ranks of binary Hypervolume indicator (lower is better) for each combination of instance type and size and

edge selection probability used after 50%/80%/100% of the number of generations.

CEG-EUCRND CEG-RNDRND CL-DEG-EUCRND CL-DEG-RNDRND DEG-EUCRND DEG-RNDRND

Strategy n = 25 n = 50 n = 100 n = 250 n = 25 n = 50 n = 100 n = 250 n = 25 n = 50 n = 100 n = 250 n = 25 n = 50 n = 100 n = 250 n = 25 n = 50 n = 100 n = 250 n = 25 n = 50 n = 100 n = 250

DE 1 / 1 / 1 1 / 1 / 1 1 / 1 / 1 1 / 1 / 1 1 / 1 / 1 1 / 1 / 1 1 / 1 / 1 1 / 1 / 1 1 / 1 / 2 2 / 3 / 3 1 / 2 / 2 2 / 2 / 3 1 / 1 / 1 2 / 2 / 3 2 / 2 / 2 2 / 2 / 2 1 / 1 / 1 3 / 3 / 3 2 / 2 / 2 2 / 2 / 2 1 / 1 / 1 2 / 2 / 3 2 / 2 / 2 1 / 1 / 1
DS 4 / 4 / 4 4 / 4 / 4 4 / 4 / 4 4 / 4 / 4 4 / 4 / 4 4 / 4 / 4 4 / 4 / 4 4 / 4 / 4 3 / 2 / 3 2 / 2 / 2 4 / 4 / 4 2 / 2 / 2 4 / 3 / 3 2 / 2 / 2 4 / 4 / 4 3 / 2 / 1 3 / 3 / 3 2 / 2 / 2 4 / 4 / 4 2 / 2 / 2 4 / 3 / 3 2 / 2 / 2 4 / 4 / 4 3 / 2 / 2
RE 2 / 2 / 2 2 / 2 / 2 2 / 2 / 2 2 / 2 / 2 2 / 2 / 2 2 / 2 / 2 2 / 2 / 2 2 / 2 / 2 4 / 4 / 4 4 / 5 / 5 2 / 1 / 1 4 / 4 / 4 2 / 3 / 4 3 / 4 / 4 1 / 1 / 1 4 / 4 / 4 4 / 4 / 4 4 / 5 / 5 1 / 1 / 1 4 / 4 / 4 2 / 4 / 4 4 / 5 / 5 1 / 1 / 1 4 / 4 / 4
RS 3 / 3 / 3 3 / 3 / 3 3 / 3 / 3 3 / 3 / 3 3 / 3 / 3 3 / 3 / 3 3 / 3 / 3 3 / 3 / 3 2 / 2 / 2 2 / 2 / 3 3 / 3 / 3 2 / 2 / 2 3 / 3 / 3 2 / 2 / 2 3 / 3 / 3 3 / 2 / 3 2 / 2 / 2 2 / 3 / 3 3 / 3 / 3 2 / 2 / 2 3 / 2 / 2 3 / 3 / 3 3 / 3 / 3 2 / 3 / 3
UN 5 / 5 / 5 5 / 5 / 5 5 / 5 / 5 5 / 5 / 5 5 / 5 / 5 5 / 5 / 5 5 / 5 / 5 5 / 5 / 5 5 / 5 / 5 5 / 4 / 4 5 / 5 / 5 5 / 4 / 4 5 / 5 / 5 5 / 5 / 4 5 / 5 / 5 5 / 5 / 5 5 / 5 / 5 5 / 3 / 3 5 / 5 / 5 5 / 5 / 5 5 / 5 / 5 5 / 4 / 3 5 / 5 / 5 5 / 5 / 5

Table 2: Percentage of runs where the corresponding edge selection strategies performed best regarding the hypervolume

indicator split up by instance set and instance size. We report the results for 50%, 80% and 100% of the number of generations.

Note that in each replication each edge selection strategy started with the same initial population. The highest percentage

value is typeset bold with gray background for improved visual perception.

50% generations 80% generations 100% generations

group n RS RE DE DS UN RS RE DE DS UN RS RE DE DS UN

25 0.16% 30.40% 69.44% 0.00% 0.00% 0.32% 27.52% 72.16% 0.00% 0.00% 0.00% 25.12% 74.88% 0.00% 0.00%
50 0.00% 13.92% 86.08% 0.00% 0.00% 0.00% 11.84% 88.16% 0.00% 0.00% 0.00% 9.92% 90.08% 0.00% 0.00%
100 0.00% 2.88% 97.12% 0.00% 0.00% 0.00% 2.40% 97.60% 0.00% 0.00% 0.00% 1.60% 98.40% 0.00% 0.00%

CEG-EUCRND

250 0.00% 0.80% 99.20% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.16% 99.84% 0.00% 0.00%

25 0.16% 32.32% 67.52% 0.00% 0.00% 0.16% 25.92% 73.92% 0.00% 0.00% 0.00% 24.96% 75.04% 0.00% 0.00%
50 0.00% 21.60% 78.40% 0.00% 0.00% 0.00% 15.20% 84.80% 0.00% 0.00% 0.00% 12.48% 87.52% 0.00% 0.00%
100 0.00% 3.52% 96.48% 0.00% 0.00% 0.00% 3.04% 96.96% 0.00% 0.00% 0.00% 3.20% 96.80% 0.00% 0.00%

CEG-RNDRND

250 0.00% 0.32% 99.68% 0.00% 0.00% 0.00% 0.32% 99.68% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

25 22.08% 17.44% 27.04% 23.20% 10.24% 20.48% 16.00% 24.64% 23.84% 15.04% 22.08% 16.16% 21.76% 23.20% 16.80%
50 25.76% 16.00% 24.96% 25.60% 7.68% 27.84% 14.08% 25.12% 22.24% 10.72% 26.88% 16.64% 21.76% 19.52% 15.20%
100 25.12% 19.68% 29.92% 23.36% 1.92% 28.96% 14.40% 27.52% 24.80% 4.32% 26.88% 14.72% 28.00% 23.68% 6.72%

CL-DEG-EUCRND

250 22.08% 30.56% 32.48% 14.72% 0.16% 20.64% 38.88% 26.40% 12.32% 1.76% 19.20% 46.56% 23.52% 9.44% 1.28%

25 25.28% 20.96% 26.08% 22.24% 5.44% 23.68% 14.24% 29.28% 25.12% 7.68% 24.16% 14.72% 22.72% 26.72% 11.68%
50 22.24% 17.76% 34.40% 24.32% 1.28% 24.80% 12.64% 30.72% 29.12% 2.72% 26.56% 11.84% 29.44% 26.88% 5.28%
100 18.56% 26.88% 40.16% 14.40% 0.00% 24.00% 18.56% 39.36% 17.76% 0.32% 26.24% 15.36% 37.92% 20.00% 0.48%

CL-DEG-RNDRND

250 8.16% 55.84% 33.92% 2.08% 0.00% 6.08% 64.48% 26.88% 2.56% 0.00% 5.60% 74.08% 19.20% 1.12% 0.00%

25 22.24% 15.20% 22.08% 27.68% 12.80% 20.96% 11.04% 20.96% 27.84% 19.20% 23.04% 8.96% 21.92% 26.08% 20.00%
50 24.80% 16.16% 32.48% 23.20% 3.36% 26.72% 13.60% 30.08% 23.20% 6.40% 24.64% 12.96% 28.96% 25.76% 7.68%
100 24.48% 15.68% 36.48% 21.76% 1.60% 28.48% 14.56% 30.08% 24.00% 2.88% 26.24% 18.72% 29.28% 21.92% 3.84%

DEG-EUCRND

250 13.76% 44.64% 37.60% 4.00% 0.00% 10.72% 59.52% 26.72% 3.04% 0.00% 7.36% 70.40% 19.84% 2.40% 0.00%

25 20.64% 15.52% 28.96% 26.88% 8.00% 21.28% 10.08% 27.20% 27.04% 14.40% 20.48% 10.40% 24.32% 28.32% 16.48%
50 22.88% 17.12% 36.96% 20.96% 2.08% 21.92% 11.84% 36.96% 25.76% 3.52% 21.92% 10.24% 35.84% 26.88% 5.12%
100 20.32% 22.40% 43.04% 14.24% 0.00% 22.56% 16.00% 43.68% 17.76% 0.00% 24.96% 16.32% 41.12% 17.44% 0.16%

DEG-RNDRND

250 8.16% 51.52% 38.88% 1.44% 0.00% 7.20% 60.32% 31.04% 1.44% 0.00% 6.72% 70.24% 22.24% 0.80% 0.00%

pair H0 : IHV(A, I ) ≥ IHV(B, I ) vs. H1 : IHV(A, I ) < IHV(B, I ) for
edge-selection strategies A,B and instance I with significance level
α = 0.01 (with Bonferroni-Holm p-value adjustment). The percent-
age values in Table 3 aggregate for the given pair of biased selection
mechanisms, the instance type, and the respective instance size, at
what ratio the first selection operator significantly outperforms the
second operator, i. e., the fraction of instances for which the null
hypothesis H0 was rejected. The unbiased UN operator is almost
always significantly outperformed and does only once, in a single
run for a small instance of n = 25 with low density significantly
outperform all other strategies. The results show that the DE se-
lection is constantly superior to all other biased selection types for
complete/dense graphs. Additionally the DE and DS selection are
slightly more stable in its quality compared to baseline (UN).

Overall, from the analysis and for mcMST problems, we can
conclude that biased selection strategies for edges included into
the one-edge-exchange mutation are advantageous and support
convergence to the optimal solution. For larger and strongly con-
nected/dense instances this effect is more pronounced than for small

and sparse graph topologies. Still, all biased selection approaches
significantly outperform the standard approach of unbiased mu-
tation in the vast majority of cases4. This essentially means, that
beneficial information ś that is, the sampling probability for edges
ś can be extracted from the considered problem instance and di-
rectly integrated into the acceleration of the evolutionary solution
approach.

6 CONCLUSIONS

We considered biased edge-selection strategies for the classical one-
edge-exchange mutation operator for the bi-criteria spanning tree
problem. Experiments show that ś similar to the single-objective
scenario as research indicated in earlier studies ś edges of łlow
rankž, i. e., a low non-domination level or a low number of dominat-
ing edges according to our definition, have a much higher probabil-
ity of occurrence in non-dominated spanning trees. We leveraged

4As shown in Table 3, there were only few special cases in which UN was not signifi-
cantly outperformed.
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Table 3: Aggregated results of pairwise non-parametric Wilcoxon rank sum tests with Bonferroni-Holm p-value adjustment

to account for potential multiple testing issues. The table shows the fraction of instances I (split by instance set and instance

size) where the corresponding null hypothesis IHV(A, I ) ≥ IHV(B, I ) is rejected as highly significant (α = 0.01). For better visual
perception, values > 20% are highlighted with increasing background intensity.
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25 100% 0% 60% 0% 100% 0% 100% 0% 0% 100% 0% 76% 100% 0% 100% 0% 100% 0% 100% 0%
50 100% 0% 92% 0% 100% 0% 100% 0% 0% 100% 0% 100% 100% 0% 100% 0% 100% 0% 100% 0%
100 100% 0% 100% 0% 100% 0% 100% 0% 0% 100% 0% 100% 100% 0% 100% 0% 100% 0% 100% 0%

CEG-EUCRND

250 100% 0% 100% 0% 100% 0% 100% 0% 0% 100% 0% 100% 100% 0% 100% 0% 100% 0% 100% 0%

25 100% 0% 64% 0% 100% 0% 100% 0% 0% 100% 0% 88% 100% 0% 100% 0% 100% 0% 100% 0%
50 100% 0% 96% 0% 100% 0% 100% 0% 0% 100% 0% 100% 100% 0% 100% 0% 100% 0% 100% 0%
100 100% 0% 100% 0% 100% 0% 100% 0% 0% 100% 0% 100% 100% 0% 100% 0% 100% 0% 100% 0%

CEG-RNDRND

250 100% 0% 100% 0% 100% 0% 100% 0% 0% 100% 0% 100% 100% 0% 100% 0% 100% 0% 100% 0%

25 4% 4% 16% 0% 0% 4% 4% 0% 12% 0% 0% 0% 16% 4% 0% 16% 0% 16% 8% 0%
50 0% 0% 8% 0% 0% 0% 4% 0% 20% 0% 0% 4% 16% 0% 0% 20% 0% 12% 16% 0%
100 0% 0% 20% 0% 4% 0% 52% 0% 16% 0% 4% 0% 44% 0% 0% 16% 24% 4% 48% 0%

CL-DEG-EUCRND

250 16% 0% 0% 24% 4% 0% 100% 0% 0% 68% 0% 8% 72% 0% 40% 0% 100% 0% 92% 0%

25 0% 4% 8% 0% 8% 0% 28% 0% 28% 0% 4% 0% 36% 0% 0% 16% 12% 4% 20% 0%
50 0% 0% 44% 0% 0% 0% 80% 0% 44% 0% 0% 0% 72% 0% 0% 36% 24% 0% 56% 0%
100 20% 0% 40% 0% 4% 0% 100% 0% 24% 0% 0% 4% 100% 0% 0% 32% 80% 0% 100% 0%

CL-DEG-RNDRND

250 100% 0% 0% 68% 60% 0% 100% 0% 0% 100% 0% 68% 100% 0% 100% 0% 100% 0% 100% 0%

25 0% 4% 12% 0% 0% 0% 0% 4% 28% 0% 4% 0% 4% 4% 0% 12% 0% 24% 0% 4%
50 0% 0% 12% 0% 0% 0% 36% 0% 20% 0% 4% 0% 60% 0% 0% 20% 8% 4% 40% 0%
100 0% 0% 28% 0% 4% 0% 84% 0% 24% 0% 0% 0% 76% 0% 0% 24% 56% 8% 84% 0%

DEG-EUCRND

250 88% 0% 0% 68% 16% 0% 100% 0% 0% 100% 0% 24% 100% 0% 96% 0% 100% 0% 100% 0%

25 0% 0% 36% 0% 0% 0% 0% 0% 44% 0% 4% 0% 8% 0% 0% 32% 0% 40% 4% 4%
50 8% 0% 64% 0% 4% 0% 84% 0% 56% 0% 0% 0% 88% 0% 0% 44% 24% 0% 80% 0%
100 24% 0% 44% 0% 8% 0% 100% 0% 20% 0% 0% 4% 100% 0% 0% 32% 80% 0% 100% 0%

DEG-RNDRND

250 100% 0% 0% 68% 64% 0% 100% 0% 0% 100% 0% 60% 100% 0% 88% 0% 100% 0% 100% 0%

these insights by proposing several biased edge-selection strategies
and compared their performance with the unbiased uniform edge-
selection strategy. A study on a diverse set of benchmark graphs
reveals a significant superiority over the baseline in particular for
complete graphs with respect to hypervolume and ε -indicator in
particular for graphs with high edge density.

Future research directions are manifold: In this work we focused
on the edge-selection probability for insertion. However, removing
an edge from the resulting cycle was still based on a uniform ran-
dom decision. There are several avenues for improvement in this
direction, e. g., by mirroring the edge-selection probability for in-
sertion or deleting edges in some greedy fashion. Moreover, we are
excited to investigate whether our approach is directly transferable
to other, more complex, combinatorial optimization problem like
the multi-criteria Traveling Salesperson Problem.
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